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Anti- TNF dose can be reduced in PsA and axSpA
Results from a retrospective cohort study suggest that use of  
a disease activity- guided dose optimization (DAGDO) strategy  
to taper TNF inhibitor therapy is safe and effective in patients 
with psoriatic arthritis (PsA) or axial spondyloarthritis (axSpA) 
and low disease activity. The mean percentage of daily defined 
dose of TNF inhibitor was 108% in the full- dose period and  
78% after DAGDO in those with PsA (n = 153; median follow- up 
period 46 months), and 108% in the full- dose period and 72% 
after DAGDO in those with axSpA (n = 171; median follow- up 
period 44 months), with no difference in disease activity scores.
ORIgINAL ARTIcLe Michielsens, C. A. J. et al. Tumour necrosis factor inhibitor dose 
adaptation in psoriatic arthritis and axial spondyloarthritis (TAPAS): a retrospective  
cohort study. Rheumatology https://doi.org/10.1093/rheumatology/keab741 (2021)
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Cancer recurrence risk not increased by DMARDs
A meta- analysis of 12 retrospective studies determined that 
the overall risk of any new or recurrent cancer in patients 
with rheumatoid arthritis (RA) and a history of cancer is not 
increased in those who initiate any biologic DMARD (bDMARD) 
compared with those who do not start bDMARDs (RR 1.09; 
95% CI 0.92–1.32, P = 0.31); the total number of patients in the 
studies could not be calculated owing to missing data but was 
at least 7,560. On the basis of data from four studies, bDMARD 
treatment was associated with an increased risk of new or 
recurrent skin cancer (RR 1.32; 95% CI 1.02–1.72); however, skin 
cancer risk was not increased when melanomas were excluded.
ORIgINAL ARTIcLe Wetzman, A. et al. Risk of cancer after initiation of targeted  
therapies in patients with rheumatoid arthritis and a prior cancer: systematic review  
with meta- analysis. Arthritis Care Res. https://doi.org/10.1002/acr.24784 (2021)
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Which NSAIDs are best for OA treatment?
In a network meta- analysis of 192 randomized trials (102,829 
participants) that evaluated different preparations and doses 
of NSAIDs, opioids or paracetamol to treat osteoarthritis (OA), 
the oral NSAIDs etoricoxib 60 mg per day and diclofenac 
150 mg per day seemed to be the most effective interventions 
for improving pain and function but were associated with an 
increased risk of adverse events. Topical diclofenac 70–81 mg 
per day also seemed effective and was generally safer than 
oral diclofenac. The clinical benefit of opioids for OA did not 
outweigh the risk of harm, regardless of dose.
ORIgINAL ARTIcLe da Costa, B. R. et al. Effectiveness and safety of non- steroidal  
anti- inflammatory drugs and opioid treatment for knee and hip osteoarthritis: network 
meta- analysis. BMJ 375, n2321 (2021)
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Treatment withdrawal is feasible in RA remission
Many patients with rheumatoid arthritis (RA) can remain in 
remission after tapering or withdrawal of DMARD therapy, 
according to findings from the phase III RETRO trial. Among 
282 patients with sustained (≥12 months) remission, 43.3% of 
those who then discontinued DMARDs at 6 months maintained 
relapse- free remission at 12 months, compared with 58.6% 
of those whose dose of DMARDs was halved and 81.2% who 
continued to receive a full dose. Most patients whose disease 
relapsed regained remission after restarting treatment.
ORIgINAL ARTIcLe Tascilar, K. et al. Treatment tapering and stopping in patients  
with rheumatoid arthritis in stable remission (RETRO): a multicentre, randomised, 
controlled, open- label, phase 3 trial. Lancet Rheumatol. https://doi.org/10.1016/ 
S2665-9913(21)00220-4 (2021)

to mimic osteoarthritic cartilage, and 
in vivo in the joints of healthy rats.

Using surgical transection of the 
anterior cruciate ligament to mimic 
post-traumatic OA in rats, Ren and 
colleagues examined the effects of 
their biomimetic lubricants on dis-
eased cartilage. The combination of 
HA/PM and HA/PA performed better 
than either lubricant alone and was 
able to restore lubrication of the joint 
to near normal levels, thereby aiding 
cartilage healing. The combination 
treatment also performed better than 
either HA alone or an injectable HA 
formulation currently used in the 
clinic. Cartilage in affected joints 
8-weeks post-treatment with HA/PM 
and HA/PA looked very similar to 
cartilage from healthy joints, with a 
uniform distribution of aggrecan and 
type II collagen and a smooth surface, 
suggesting that cartilage regeneration 
had taken place.

The researchers hope to perform 
follow-on studies in large animals 
with joint anatomy that is more simi-
lar to humans, with a view to moving 
their lubricant towards the clinic.

Joanna Clarke
ORIgINAL ARTIcLe Xie, R. et al. Biomimetic 
cartilage-lubricating polymers regenerate cartilage 
in rats with early osteoarthritis. Nat. Biomed. Eng. 
https://doi.org/10.1038/s41551-021-00785-y 
(2021)
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Toluidine blue and safranin O staining of the  
knee joints of rats with osteoarthritis 8 weeks  
after intra-articular injection of HA/PA and HA/
PM. Scale bar, 500 µm. Adapted from Xie, R. et al. 
Nat. Biomed. Eng. https://doi.org/10.1038/s41551-
021-00785-y (2021), Springer Nature Limited.

The extracellular matrix at the 
surface of healthy articular cartilage 
and its interaction with synovial fluid 
molecules ensure a low degree of 
friction within the joint. Lubricin  
and lipid components of the synovial  
fluid form a nanofibre with hyalur-
onic acid (HA) that binds to type II 
collagen and fibronectin in cartilage, 
effectively lubricating the joint.  
This lubrication is lost when cartil-
age is damaged, as occurs during  
osteoarthritis (OA).

“During the early stage of OA, 
cartilage friction is increased, result-
ing in the formation of chondral 
debris and subsequent inflamma-
tion,” explains Li Ren of South 
China University of Technology, 
corresponding author of a new study 
on the restoration of cartilage lubri-
cation as a treatment for OA. “The 
chondral debris and inflammation 
inside the joint lead to a feedback 
loop that accelerates the damage. 
HA can be injected into the joints of 
patients every month as a lubricant 
to treat OA. However, HA is quickly 
degraded by the enzymes present  
in the joint due to inflammation.”

Ren and colleagues studied the  
natural interactions between cartil age  
and synovial fluid in order to create 
a lubricant that would be resistant to 
degradation by enzymes associa ted 
with inflammation in the joint. “Our 
strategy is biomimicry,” states Ren.  
“Many researchers have focused their 
work on increasing the degradation- 
resisting properties of lubricants by 
methods such as cross-linking or 
increasing the molec ular weight. 
However, in our opinion, the lubri-
cant should interact with the cartilage 
surface in a more natural way.”

Using their biomimicry strategy, 
the research team developed two 
synthetic nanofibres with an HA 
backbone: one that mimics lubricin 
(called HA/PM) and one that mimics 
lipids (called HA/PA). These nano-
fibers were designed to be biocom-
patible and to bind to fibronectin and 
type II collagen, properties that were 
confirmed both in vitro using human 
cartilage explants treated with trypsin 
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Restoring cartilage lubrication 
to heal post-traumatic OA
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Individuals with psoriasis who are at 
increased risk of developing psoriatic arthritis 
(PsA) provide a unique opportunity to study 
disease progression and potentially intervene 
to prevent PsA from developing1. This disease 
prevention concept has been addressed in a 
study by Acosta Felquer et al.2, as well as in 
two additional studies3,4, all of which used 
retrospective cohort study designs to assess 
whether systemic treatment of psoriasis 
reduces the risk of incident PsA. Althought 
the studies present somewhat similar results, 
we urge caution when interpreting the con-
clusions as retrospective study designs have 
inherent limitations.

In their publication, Acosta Felquer et al.  
present a retrospective cohort study from 
a single health maintenance organization 
(HMO) in Argentina2. In this study, all patients  
with psoriasis not diagnosed with PsA at 
baseline who were seen in the HMO between 
2000 and 2018 were monitored in follow-up 
for the development of PsA. Follow-up time 
started at initiation of a topical therapy, 
biologic DMARD (bDMARD) or conven-
tional synthetic DMARD (csDMARD) and 
ended at time of PsA diagnosis or the end of 
follow-up in the electronic medical record. 
In total, 103 patients receiving bDMARD 
therapy were observed for an average of  
4.4 years, 6 of whom developed PsA (0.43 per 
100 person years), and 229 patients receiving 
csDMARDs were observed for an average of 
1 year, 2 of whom developed PsA (1.20 per 
100 person years). By contrast, 231 cases 
of PsA were diagnosed among individuals 

with psoriasis who had used bDMARDs with  
those who had not used bDMARDs (but had 
been prescribed either two systemic thera-
pies or one systemic therapy and photo-
therapy) within an HMO. The primary 
outcome was an International Classification 
of Diseases (ICD9) code for PsA, ankylos-
ing spondylitis, enthesitis, spondylosis or 
undifferentiated arthritis in the 10 years fol-
lowing therapy initiation. The two groups 
were quite different at baseline, becoming 
more similar after propensity score match-
ing but differing with regards to male:female 
ratio and year of diagnosis. Over a mean of 
8 years, 109 bDMARD-exposed (16%) and 
75 bDMARD-naive (11%) patients devel-
oped PsA and/or possible PsA (for example, 
ICD9 codes for other types of inflamma-
tory  arthritis) with an HR of 1.39 (95% CI 
1.03–1.87).

Although the results of these studies2–4 are 
largely congruent with our hypothesis that 
treatment of psoriasis improves the risk for 
PsA1, some caveats are needed when inter-
preting their conclusions. First, as is often the 
case with retrospective cohort studies that 
compare two or more therapies, the groups 
of patients are clearly not comparable. The 
potential for confounding by indication is 
substantial; for example, reasons behind the  
choice of treatment might be related to  
the seve rity of psoriasis (which is known to be  
associated with development of PsA6) or to 
more complex and often undocumented fac-
tors (such as whether a patient qualifies for or 
even wants bDMARD therapy). Additionally, 
differential follow-up times (bDMARDs tend 
to be started later in the disease course) might 
allow for more time to develop and identify 
PsA in one group than in another. All three 
studies2–4 employed propensity score match-
ing, in which a score that reflects the proba-
bility of receiving treatment is created from 
measured covariates and patients with simi-
lar scores from different groups are matched, 
as a way to balance the treatment groups. 
However, a core principle of interpreting the 
results of propensity score matching causally 
is that there cannot be substantial unmeasured 

receiving topicals treatments (n = 1,387) over 
an average of 10 years of follow-up (1.67 per 
100 person years). Thus, the incidence of PsA 
in those receiving topical therapy was much 
higher than in those receiving bDMARDs or 
csDMARDs. The difference between those 
receiving bDMARDs and the remainder of 
the cohort remained similarly ‘protective’ after 
propensity score matching. One interesting 
aspect of this study was that the researchers 
found a relatively high incidence of PsA2; this 
result could further support the dermatology–
rheumatology collaborative care model5 that 
this centre utilizes.

In another single, combined dermatology–
rheumatology centre study, Gisondi et al. uti-
lized a similar design to assess incident PsA 
risk3. Patients were included if they had com-
pleted at least three phototherapy treatment 
courses or had received bDMARD therapy for 
at least 5 years. Using traditional multivariable 
models, the hazard ratio (HR) for bDMARD 
therapy compared with phototherapy was 0.31 
(95% CI 0.13–0.74) after adjusting for age, sex, 
psoriasis severity and nail psoriasis. However, 
after applying propensity score matching, 
the HR was 2.07 (95% CI 0.87–4.93)3. These 
results were not only attentuated from those 
presented by Acosta Felquer et al.2, but were 
in fact ‘flipped’ to suggest a possible associ-
ation between bDMARD use and increased 
risk of incident PsA after applying propensity 
score matching (albiet with wide confidence 
intervals).

In a third retrospective cohort study, 
Shalev Rosenthal et al.4 compared patients 
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Does psoriasis treatment affect 
PsA development?
Joseph F. Merola and Alexis Ogdie

The results of several retrospective studies have reported that systemic 
treatment in patients with psoriasis reduces the risk of incident psoriatic 
arthritis (PsA). Although encouraging from a prevention perspective, such 
studies are limited in their ability to provide a conclusive understanding  
of PsA risk, preventing a clear picture from emerging.

Refers to Acosta Felquer M. L. et al. Treating the skin with biologics in patients with psoriasis decreases the incidence 
of psoriatic arthritis. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2021-220865 (2021).

retrospective designs … can 
only provide information about 
the beginning of the story
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confounding. In this scenario, there is clear 
unmeasured confounding as only limi ted 
ways exist to measure or identify why one 
patient is prescribed a bDMARD when an 
otherwise similar patient is not. Thus, the 
results of these studies2–4 cannot be interpreted 
causally but only as observed assocations 
within a given patient population. Because of 
the types of imbalances in treatment groups 
in both measured and unmeasured charac-
teristics, retrospective designs such as those 
used in these three studies can only provide 
information about the beginning of the story. 
The develop ment of PsA risk scores could 
improve our understanding of the results of 
retrospective studies; for example, patients 
could be stratified on the basis of risk of PsA 
to examine differences by risk level.

Next, the lopsided incidence of PsA between  
groups in these studies2–4 could be related 
more to study design than to biology. Patients 
at high risk of PsA or who are experiencing 
joint symptoms might have been excluded 
or have already been diagnosed with PsA 
at the time of therapy initiation (particu-
larly given the access to rheumatologists 
in the dermatology–rheumatology collab-
oration centres). This factor could be par-
ticularly problematic in designs in which 
inclusion requires a specific duration of therapy.  
In addition, dermatologists, particularly those 
trained to detect PsA in a collaborative centre, 
might be selecting systemic agents over topi-
cal therapy or phototherapy for patients with  

musculoskeletal symptoms and other risk 
factors for PsA development. Furthermore, 
by only studying a population that is seen by 
dermatologists (as was done in these three 
studies) the true risk in the full population of 
individuals with psoriasis could be underesti-
mated or overestimated. Dermatologists in the 
USA, for example, tend to undercapture mus-
culoskeletal complaints compared with gen-
eral practitioners7. The dermatology-based 
population of patients with psoriasis might 
also be different for other reasons, opening up 
the opportunity for collider stratification bias, 
a form of selection bias in which the results 
in the selected population can differ from the 
results in the full population, which has been 
observed in other aspects of psoriatic disease8.

Lastly, relatively few outcomes were 
observed in all three studies2–4. This low number  
of outcomes leads to wide confidence inter-
vals, suggesting that larger studies are needed 
to confirm their findings. We propose large, 
multicentre or even multinational studies, in 
which a broader population can be observed.

In summary, considerable gaps remain in 
our knowledge of how systemic treatment 
of psoriasis potentially affects progression 
to PsA. These three retrospective studies2–4, 
although representing positive steps forward, 
leave us without the conclusive data that only 
a prospective randomized controlled trial 
might afford. In Box 1, we summarize addi-
tional biases that should be considered when 
interpreting observational studies that seek 

Box 1 | Considerations when interpreting observational data

Several forms of bias can influence the results of retrospective cohort studies examining the 
outcomes of therapy, which are important to consider when interpreting data to infer causality10.

Confounding by indication
Patients are prescribed a medication for reasons (‘an indication’) beyond a simple set of rules  
and often these reasons are not measured, interfering with interpretation of the results.

Confounding by prognosis
Therapy is prescribed because a patient has a poor prognosis; in this case, the groups might  
have differential risks for the outcome (or prognosis) at baseline that cannot be adjusted for  
in the analysis.

Unmeasured confounding
Important covariates that would ideally be included in the analysis are not measured or captured 
in the dataset and could influence both the receipt of therapy and the outcome of interest.

Survival bias
A patient must ‘survive’ to receive the therapy of interest, leading to differences in the groups 
(particularly the duration of disease); this is a form of selection bias.

Protopathic bias
A therapy is prescribed because of a symptom or an undiagnosed disease that is also the outcome 
of interest.

Collider stratification bias
Studying a subset of the population might result in spurious results that are not replicated when 
examining the full the population.

to examine the effect of bDMARD therapy 
on the development of PsA. It is clear that 
thoughtfully designed prospective studies are 
needed to move the field forward; ongoing 
work from a prevention of PsA study group 
(PAMPA) is seeking to answer this question 
by defining a group of patients with psori-
asis who are at-risk for progression to PsA 
and assessing disease modification with an 
 interventional study design1,9.
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Machine learning (ML) is an extension of computer sci-
ence and statistics and involves the use of algorithms to 
recognize relationships in data and/or predict outcomes1. 
ML models are not explicitly programmed2,3, meaning 
that each decision that the model makes is not deter-
mined by a user-inputted ‘if-then’ statement. Because 
ML models do not have direct instructions about how to 
approach a problem, ML models ‘learn’ or rather extract 
knowledge from input data4. Like statistical modelling, 
ML can be used to determine associations within data5. 
Whereas a rules-based statistical model is aimed at 
explaining specified or hypothesis-driven relationships 
in data6, ML attempts to discover underlying connec-
tions in data and make decisions based on newly discov-
ered associations. ML often uses unknown relationships 
that cannot be identified with other statistical techniques 
to predict outcomes. Moreover, ML uncovers unantici-
pated connections in the data, which is favourable for 
hypothesis generation.

The use of ML applications has increased because of 
the capacity of models to analyse high-dimensional data 
(that is, data in which there are more data points than 

samples). This ‘big data’ from electronic health records 
(EHRs), imaging, genetics and transcriptomics often 
makes purely statistical analyses unfeasible. For exam-
ple, ML is well suited to address many of the challenges 
that arise in analysis of EHRs of patients with rheumatic 
autoimmune inflammatory diseases (RAIDs), such as the 
low accuracy of standard disease identification codes, 
low prevalence of RAIDs in the general population, and 
a need to determine which of many clinical features 
are important. Consequently, numerous studies have 
employed ML to identify patients with RAIDs and others 
have similarly employed ML techniques to extract signif-
icant clinical variables from the text of EHRs and classify 
patients7–13. In addition, ML can be used in big data anal-
yses to identify associations when there is no apparent 
hypothesis to be tested. ML analysis of high-dimensional 
data is particularly useful for research in complex chronic 
diseases, such as RAIDs, in which the patient popula-
tion is extremely heterogeneous, the conditions evolve 
over time and multiple factors contribute to disease 
burden14–16. Advanced analytical strategies, such as ML, 
offer a means of determining disease patterns among 

Machine learning
(ML). A subset of artificial 
intelligence that utilizes 
software to predict outcomes 
and recognize relationships  
in data without explicit 
programmes for each step.

Algorithms
Mathematical or 
computational methods that 
can be applied to data to form 
a model.

Model
A framework built upon input 
data that can classify, regress 
or cluster.

 An introduction to machine learning 
and analysis of its use in rheumatic  
diseases
Kathryn M. Kingsmore   ✉, Christopher E. Puglisi, Amrie C. Grammer   and 
Peter E. Lipsky  

Abstract | Machine learning (ML) is a computerized analytical technique that is being increasingly 
employed in biomedicine. ML often provides an advantage over explicitly programmed strategies 
in the analysis of multidimensional information by recognizing relationships in the data that were 
not previously appreciated. As such, the use of ML in rheumatology is increasing, and numerous 
studies have employed ML to classify patients with rheumatic autoimmune inflammatory 
diseases (RAIDs) from medical records and imaging, biometric or gene expression data. However, 
these studies are limited by sample size, the accuracy of sample labelling, and absence of datasets 
for external validation. In addition, there is potential for ML models to overfit or underfit the  
data and, thereby, these models might produce results that cannot be replicated in an unrelated 
dataset. In this Review, we introduce the basic principles of ML and discuss its current strengths 
and weaknesses in the classification of patients with RAIDs. Moreover, we highlight the successful 
analysis of the same type of input data (for example, medical records) with different algorithms, 
illustrating the potential plasticity of this analytical approach. Altogether, a better understanding 
of ML and the future application of advanced analytical techniques based on this approach, 
coupled with the increasing availability of biomedical data, may facilitate the development of 
meaningful precision medicine for patients with RAIDs.
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patients with RAIDs and aid in prediction of numerous 
outcome measurements.

Although the integration of data science and ML 
with the clinical practice of rheumatology is at a nas-
cent stage, ML is frequently used in other areas of bio-
medicine to analyse medical images17, subtype patient 
cohorts (especially based on omics data)18, predict drug 
response19 and aid in guiding personalized medicine20. 
ML-driven analyses of these and other outcome meas-
ures could greatly improve both research and clinical 
practice in RAIDs6,21–23. For example, in diseases such as 
primary Sjögren’s syndrome (pSS) and systemic lupus 
erythematosus (SLE), for which few approved therapies 
are available, ML has the potential to aid in identifica-
tion of candidates for drug repurposing24. Similarly, in 
rheumatoid arthritis (RA), psoriatic arthritis (PsA) and 
ankylosing spondylitis (AS), there is a need to predict 
the most effective therapy from many approved biologics 
and targeted small molecules25,26. In addition, ML might 
be useful to classify patients with RAIDs or predict dis-
ease outcomes based on available genetic27 or ancestry28 
data. Altogether, ML has the potential to elucidate 
unknown connections between features of patients with 
RAIDs and ultimately help to facilitate effective patient 
care strategies. In this Review, we describe the common 
algorithms used for ML, explain the workflow of build-
ing an ML model, discuss the strengths and weakness of 
ML, and illustrate these principles with examples of ML 
application in the field of rheumatology.

Principles of machine learning
Outcomes
The output of ML is the construction and application of a 
predictive model. ML algorithms are routinely employed 
to build models for one of three outcomes: classification, 
regression or clustering. Classification is the prediction 
of discrete categories of data samples29 into a labelled 
group, known as a ‘class’; regression is the prediction of 
a numerical outcome for each sample30; and clustering 
is the grouping of similar observations into unlabelled 
groups formally known as ‘clusters’ (FiG. 1). In theory, 
in SLE, ML classification models could distinguish 
patients with SLE from controls, whereas regression 

models could be used to predict the value for autoanti-
body titre in each patient based on their diagnosed class 
or other features. Patients could further be assigned to 
classes such as ‘active disease’ or ‘inactive disease’ based 
on their predicted autoantibody titre value. Clustering  
of the same SLE and control samples would group sam-
ples on the basis of their similar characteristics into 
subsets.

Types of machine learning
ML algorithms for classification, regression and cluster-
ing belong to one of four types of learning, including 
supervised, unsupervised, semi-supervised and rein-
forcement learning31, of which supervised and unsu-
pervised algorithms are the most common. Supervised 
and unsupervised algorithms can be differentiated based 
on whether the outcome variable is labelled32,33 — that 
is, the identity of the model outcome variable is known 
(for example, SLE or healthy, or positive or negative for 
autoantibodies). Data labels are often determined by an 
expert in the field or based on measurement of a specific 
parameter (such as autoantibody titre). Supervised models 
are constructed to predict known groups or values (that 
is, labelled classes or values, respectively), whereas 
unsupervised models are constructed to predict groups of 
unknown quality (that is, unlabelled clusters)34, such as 
samples grouped together based on algorithm-detected 
characteristics in the data. For example, a supervised ML 
model could be applied to predict the disease activity 
status of patients with SLE with specified disease activ-
ity class (active or inactive), whereas an unsupervised 
model could group the same patients with SLE based on 
shared characteristics among patients, such as similar 
gene expression patterns, without knowing their disease 
activity status or clinical presentation.

Machine learning workflow
Although the intrinsic architecture of models built for clas-
sification, regression and clustering may differ, the model 
construction process is similar. The general workflow for 
all ML models involves data preprocessing and model 
construction (FiG. 2). Supervised classification and reg-
ression models additionally involve model validation and  
assessment34.

Data preprocessing
Data preprocessing is a fundamental part of ML35. 
Because the nature of the input data will affect the ulti-
mate model outcome prediction, careful curation of input 
data before application of an ML algorithm is essential 
to improving the usefulness and credibility of the model. 
Data curation and preprocessing include managing 
incomplete data (imputation)36, transforming the data into 
a form that a computer can utilize (data scaling)37,38, and 
selecting the most appropriate variables to use as input 
into the model (feature selection)39.

Biomedical datasets are often subject to missing 
data points. For many ML models, it is best to approx-
imate or replace missing data points, a process known 
as imputation36, for better model performance40. 
Depending on the type of data, there are many dif-
ferent statistical techniques for imputation (reviewed 

Key points

•	Appropriate application of machine learning (ml) algorithms and model construction,
including that using data from patients with rheumatic autoimmune inflammatory 
diseases (rAIDs), involves preprocessing, feature selection, comparisons of multiple 
models to determine which is most appropriate for the data, and proper validation.

•	ml has been applied to various types of data from patients with rAIDs, including 
medical records and imaging data to classify patients, sequencing data to predict 
genetic risk loci, biometric data to identify disease activity, transcriptomic data to
classify or cluster patient subtypes, and demographic, genetic and genomic data 
to predict treatment response.

•	most published studies that describe the employment of ml in rAIDs, however, only 
serve as proof-of-principle studies as they lack adequate sample sizes or external test
datasets; consequently, clinical translation of ml in rheumatology is in a nascent 
stage.

•	current ml studies provide hypotheses that can be validated in large retrospective 
datasets or used to design prospective trials characterized by correct data collection
and sample sizes that are suitable for the application of ml.

Statistical modelling
A model that relies on explicitly 
programmed mathematical 
functions to explain 
relationships in data.

Classification
Prediction of a categorical 
outcome.

Regression
Prediction of a quantitative 
outcome.

Clustering
Grouping of data points with 
similar characteristics.

Labelled
Data for which the class or 
outcome value is known.

Class
A group with a label that is 
produced from classification.

Clusters
Groups without a label that are 
produced from clustering.

Supervised models
Models trained on labelled 
data that are used to predict 
classes or quantitative values.

Unsupervised models
Models trained on unlabelled 
data that are used to find 
associations and patterns that 
result in groups of similar 
samples.

Imputation
A method of replacing missing 
values with data points.

Data scaling
The processes of transforming 
data into a format that a 
computer algorithm can  
use, which can also involve 
normalization.
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elsewhere41). In addition, ML algorithms themselves can 
be used for imputation42–44.

After imputing missing values, biomedical data often 
need to be transformed into a numerical format that a 
computer can process. For example, EHR data contain 
notes that might be in unstructured text format, such 
as International Classification of Diseases (ICD) codes, 
prescriptions and patient demographics, or numeric 
format, including values derived from laboratory meas-
urements. Natural language processing (NLP) is a specific 
branch of ML comprising computational methods by 
which computers interpret human language45. NLP algo-
rithms vary in complexity. Some NLP algorithms create 
a histogram of word frequencies in a text (for example, 
bag of words (BOWs))46, whereas others create word 

maps that represent conceptually similar ideas in close 
geometric proximity using vectors (for example, word 
embeddings)47. Thereby, similar vectors have similar 
associations that capture the word’s meaning. NLP in bio-
medicine often makes use of concept unique identifiers 
(CUIs), which are specific identifiers given to related con-
cepts in a particular discipline. For example, ‘arthralgia’ 
and ‘joint pain’ map to the CUI C0003862. The Unified 
Medical Language System is an inventory of CUIs spe-
cific to medicine that helps to delineate conceptual ideas 
for a word with multiple meanings48.

In addition, it is often necessary to transform or 
normalize numerical data before model construc-
tion, a process known as data scaling37,38. Numerous 
techniques are available for data scaling, including 

Predicted to have an
autoantibody titre of +1
(based on their known class)

Predicted to have an
autoantibody titre of +3
(based on their known class)

Categorizing similar data points into the same labelled group

Model label: healthy control Model label: SLE

Classification

0 3+0 4+2+ 2+ 3+0 01+ 2+ 4+

Grouping similar observations into clusters

Cluster 1

Clustering

00 0 01+

Cluster 2 Cluster 3

2+ 2+ 2+ 3+ 4+3+ 4+

Predicting a numerical outcome for labelled groups
Regression

00 2+0 1+ 3+ 4+2+ 4+

Features (and data type) of patients and control samples
Input

0 3+ 0 4+ 2+ 2+ 3+ 0 0 1+ 2+ 4+

Autoantibody titre: 0–4

Healthy control
SLE

Known label

Fig. 1 | The output of a machine learning model is classification, regression or clustering. Autoantibody titre data 
were provided for seven healthy individuals and five patients with systemic lupus erythematosus (SLE). A classification 
model was built using the autoantibody titre to predict the label (class) of the sample, a regression model was built that 
used the label of the sample to predict the autoantibody titre of the patient, and a clustering model aggregated the 
samples into groups (clusters) according to similar values of autoantibody titre.

Feature selection
The process of selecting the 
best set of variables to be used 
as input for the model.

Natural language 
processing
(NLP). A data scaling process 
that is also a branch of ML, 
which allows computers to 
interpret human language.
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the min–max algorithm and the z-score algorithm37. 
Dimensionality reduction techniques can also be used 
to transform existing variables into a smaller set of 
variables49. One of the most commonly used dimen-
sionality reduction techniques, principal component 
analysis (PCA), reduces high-dimensional data to a 
set of principal components based on the intrinsic fea-
tures and variance of the data50. Additional dimension-
ality reduction techniques, such as multi-dimensional 

scaling (MDS), low variance and high correlation filters, 
forward selection and backward elimination, have been 
reviewed elsewhere51–53.

ML models perform best when the number of input 
variables is optimized. Feature selection is a dimension-
ality reduction technique that is used to determine the 
most appropriate variables to use as inputs into an ML 
algorithm, as all measured variables might not provide 
information that is necessary for outcome prediction54. 

Data preprocessing
• Imputation
• Scaling
• Feature selection

Classification
• Sensitivity
• Specificity
• Accuracy
• MCC

Regression
• MSE
• RMSE
• R2

Supervised algorithms
• Decision trees
• RFs
• Bayesian
• SVM
• k-NN
• Logistic regression
• LASSO
• Elastic net

Validation (and
parameter tuning)

Validated model evaluation

Model construction
‘learning’ (and
parameter tuning)

Optional:
remove portion
for validation

Algorithm
selection

Supervised ML

Optimal
scenario

Initial
dataset

Initial
model

Cleaned dataset
(‘training dataset’)

Holdout
validation
dataset

External
test dataset

External
validation
dataset

Validated
model

Validated
model

Data preprocessing
• Imputation
• Scaling
• Feature selection

Unsupervised
algorithms
• Hierarchical
   clustering
• k-means
   clustering

Model construction
‘learning’ (and
parameter tuning)

Algorithm
selection

Unsupervised ML

Initial
dataset

Initial
model

Cleaned
dataset

Classification
• Sensitivity
• Specificity
• Accuracy
• MCC

Regression
• MSE
• RMSE
• R2

Tested model evaluation

Tested
model

Fig. 2 | Machine learning model workflow. The application of machine learning (ML) models involves data processing 
and model construction ‘learning’. For supervised models, there are additional validation and evaluation steps. Modified 
from “How to Build a Machine Learning Model”98 with permission from Dr. Chanin Nantasenamat. k-NN, k-nearest 
neighbours; LASSO, least absolute shrinkage and selection operator; MCC, Matthews correlation coefficient; MSE,  
mean squared error; RF, random forest; RMSE, root mean squared error; R2, coefficient of determination; SVM, support 
vector machine.

Dimensionality reduction
The process of reducing the 
number of input variables 
(features).

Variance
Error as a result of  
the fluctuations in the 
observations, or how  
much the observations differ 
from the average value.
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Thus, it is crucial to identify the most relevant set of 
independent variables (features) before or during algo-
rithm application. Employing a model with too many 
features is likely to increase computational expense and 
the likelihood of overfitting, whereas the application of 
a model with too few features could result in decreased 
model performance or underfitting55,56. In addition, 
some ML algorithms are highly sensitive to collinear fea-
tures (that is, features that are correlated to one another 
and thus assumed to provide redundant information)57. 
Although an investigator could build a model based on 
the features they selected as clinically relevant to the 
hypothesis to be tested, it is more reliable to employ 
computational feature selection and subsequently com-
pare the model’s ability to select features with what is 
expected clinically, as a clinician could be biased by cur-
rent knowledge of the disease, and ML might provide 
alternative relationships or results. There are many types 
of feature selection algorithms, including filter, wrapper 
and embedded methods58. Filter methods are employed 
independently of ML algorithms59,60. Filter methods 
compute the importance between features and the out-
come variable using statistical tests. Conversely, wrapper 
methods are employed as an additional algorithm dur-
ing model construction. Wrapper methods determine 
the usefulness of features based on multiple iterations 
of an ML model59,60. Embedded methods similarly carry 
out feature selection during ML model construction39,60 
but, unlike wrapper methods, they can be a part of the 
ML algorithm that is used for model construction. 
Embedded methods evaluate the importance of variables 
from the model-generated outcome61.

Model construction
Choosing the most appropriate algorithm. ML algo-
rithms used to build models vary in complexity. 
Common algorithms used for classification include 
decision trees, random forest (RF), gradient boosting 
machine (GBM), naive Bayes, support vector machine 
(SVM), k-nearest neighbours (k-NN) and logistic regres-
sion; those for regression include least absolute shrink-
age and selection operator (LASSO) and ridge regression; 
and the two most common clustering algorithms are hier-
archical clustering and k-means clustering62. Some algo-
rithms, such as decision trees, SVM and neural networks, 
can be employed for both classification and regression. 
The principles, strengths and weaknesses of these  
algorithms are summarized in Supplementary Table 1.

In addition, ML algorithms can be categorized into 
related types based on their architecture. For example, 
RF and GBM are ensemble algorithms, which aggregate 
ML algorithms to classify or regress samples63,64. Thus, 
ensemble models are capable of making more accurate 
predictions than individual algorithms63,64. The two 
predominant strategies employed to create ensemble 
methods are bagging (also known as bootstrap aggre-
gating)65 and boosting. Algorithms that employ bagging 
sample different portions of the data with replacement 
during each iteration of the model66, and, thereby, indi-
vidual models from each iteration are built from separate 
groups of samples67. In ensemble models built with bag-
ging, each sample is run through each individual model 

and the outcome recorded. The final model is an aggre-
gate of the individual models, and the final classification 
or prediction for each sample is based on the weighted 
average of the individual model classifications or pre-
dictions. RF is one of the most frequently employed 
ensemble techniques that uses bagging66. Other ensem-
ble methods employ boosting to build aggregated mod-
els. Boosting techniques add new, ‘weak’ models to the 
existing model at each iteration68,69. Each new model is 
aimed at further minimizing the error resulting from the  
previous aggregated model and is thereby trained on 
the existing error of the aggregated model68. The GBM 
algorithm is an ensemble technique that uses boosting 
and is based on the principles of gradient descent (that 
is, an optimization technique that modifies a parameter 
iteratively to determine the minimum of that particular 
function)68.

Bayesian algorithms, including naive Bayes, use Bayes’ 
theorem of probability to determine relationships among 
input data70. Bayesian algorithms are often used for 
classification, whereby the probability of each sample 
belonging to each possible class is calculated, and the 
event (class) with the highest probability is selected71. 
instance-based learning, which includes SVM and k-NN 
algorithms, differs from other algorithms as it is not 
aimed at generalizing input data, but instead makes pre-
dictions based on specific examples (instances)29 seen 
in training72. Regression algorithms employ mathematical 
functions with coefficients and variables to classify sam-
ples or regress numerical values73. For example, logis-
tic regression uses the logistic function as the basis for 
building a binary ML classifier. Regularization algorithms 
are a specific type of regression algorithm and thereby are  
similarly built using mathematical functions charac-
terized by coefficients in order to classify or predict 
variables. However, in contrast to logistic regression, 
regularization algorithms are embedded methods that 
employ feature selection during model construction. 
Regularization algorithms, such as LASSO and ridge 
regression, penalize the use of too many variables by 
shrinking model coefficients towards zero74. Both 
LASSO and ridge regression are aimed at minimizing 
coefficient magnitude to reduce model complexity and 
prevent overfitting73,74. In a regularization model con-
structed to predict disease activity status in patients with 
SLE, some variables such as antinuclear antibody titre or 
serum complement levels might be determined to con-
tribute more or less to the accuracy. If the complement 
level reduced model accuracy, the coefficient for comple-
ment level in the LASSO model could be set to zero. Two 
additional dimensionality reduction algorithms that can 
also be used for classification include linear discriminant 
analysis and partial least squares discriminant analysis 
(PLS-DA)75.

Finally, neural networks, which are algorithms that 
are designed to mimic the function of a simplified 
human brain76, can be used for supervised or unsuper-
vised learning. Neural networks take inputs and process 
them into an output through a series of layers, which 
mimic neurons firing to other neurons77. The first layer 
is the input layer, the last layer is the output layer, and all 
layers in between are known as hidden layers33,78. Each 

Biased
A biased model is one that fails 
to capture underlying patterns 
in data and thus there is a 
difference between the true 
values and the values 
predicted by the model.

Decision trees
Supervised method that asks a 
series of ‘yes or no’ questions 
with labelled data to classify or 
regress.

Clustering algorithms
Unsupervised methods that 
assign observations to subsets 
using mathematically 
calculated distances.

Neural networks
Supervised or unsupervised 
methods that build a series of 
networks to predict or classify. 
They are named because the 
structure of the model is aimed 
at mimicking the way in which 
a human brain operates.

Ensemble algorithms
Supervised methods that 
aggregate several predictors 
from multiple machine learning 
models (for example, random 
forest).

Bagging
Algorithm that generates 
training sets by sampling  
of the training data with 
replacement to generate 
individual models that are 
characteristic of the sample, 
which are then aggregated  
to build a final model.

Boosting
Algorithm that adds an 
additional simpler model to 
minimize the existing error 
during each iteration of a 
supervised model.

Bayesian algorithms
Supervised methods that solve 
classification problems by 
predicting the most probably 
hypothesis, given the input data 
(for example, naive Bayes).

Instance-based
Supervised methods that 
memorize instances seen in 
training to make predictions 
(for example, support vector 
machines and k-nearest 
neighbours).

Regression algorithms
Supervised methods that use 
linear or polynomial functions 
for or as a fundamental part of 
prediction (for example, linear 
regression and logistic 
regression).
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connection is assigned a weight, or importance77. Each  
neuron in the second layer can be thought of as a 
mathematical function whose variables are a weighted 
combination of each of the values of the neurons in 
the layer behind it. Furthermore, every neuron in the 
second layer is connected and determines the value of 
every neuron in the third layer, and so on until the final 
layer is reached73. With each iteration, the connections 
between each neuron are assigned a new weight to 
minimize error by gradient descent79. Neural networks 
are highly versatile and effective but computationally 
expensive. There are multiple variants of neural net-
works, including convolutional, recurrent and recursive 
neural networks80–82. Neural networks with roughly two 
or more hidden layers are categorized as deep-learning 
algorithms82.

Algorithm selection is dependent on the questions 
being asked about the data and on qualities of the input 
data. A general framework for deciding on applica-
ble algorithms based on the characteristics of data is 
depicted in FiG. 3. The algorithms proposed are those 
that to our knowledge are best at balancing interpreta-
bility and accuracy and are less prone to overfitting or 
underfitting the data. For example, Bayesian and SVM 
algorithms have been employed for the classification of 
text data83. In addition, decision trees are highly inter-
pretable classifiers but can be prone to overfitting84; 
therefore, ensemble methods, including aggregated 
decision trees (such as RF), may be better as a starting 
point for classification.

Hyperparameters and parameters. After algorithm 
selection, certain variables need to be defined. Each 
ML model is characterized by hyperparameters and 
parameters85. Hyperparameters are set before model 
construction, either as the default values of the soft-
ware algorithm or those that are input by the user85,86. 
For example, k in k-NN and the number of trees in 
RF are hyperparameters85,86. Hyperparameters can be 
tuned during model construction to improve model 
accuracy. Some approaches to hyperparameter tuning 
involve the evaluation of model performance with every 
combination of hyperparameters within user-defined 
boundaries87,88. For example, when constructing a 
k-NN model, the user must select two common hyper-
parameters: the number of clusters (k) and the distance 
measurement method (p). To tune the hyperparameters, 
model performance in each combination of k and p is 
evaluated and the highest performing model is selected. 
Other strategies involve setting a sampling distribution 
for each hyperparameter87. Strategies for hyperparameter  
tuning have been reviewed elsewhere88.

Conversely, parameters are determined during model 
construction based on the input data85. Parameters to 
be set are intrinsic to the type of algorithm employed, 
although their value will differ for models built on dif-
ferent datasets. During model construction, supervised 
model parameters are tuned based on the ability of 
the model to accurately predict the known outcome85. 
Unsupervised models are constructed on data for 
which the outcome is not known, and therefore with 

Is the goal to predict a class?

Is the data labelled?

Classification

Is the number of
classes known?

Is the input
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• Vectorizing
• Embeddings
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Poor
results?

Clustering
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clustering
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results?
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Is the goal to predict a specific numeric output?
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PCA, LDA, MDS, low variance
filter, high correlation filter
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RF, forward construction,
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Fig. 3 | Guidelines for selecting the most appropriate machine learning algorithm. The goal of machine learning (ML) 
is classification, regression, clustering or dimensionality reduction. Based on the characteristics of the input data (for 
example, labelled versus unlabelled) and the desired outcome (that is, predict a group or predict a value), there are often 
more appropriate algorithms to apply, yet it is still recommended that multiple algorithms are compared in order to 
discover the model with the greatest predictive power. k-NN, k-nearest neighbours; LASSO, least absolute shrinkage and 
selection operator; LDA, linear discriminant analysis; MDS, multi-dimensional scaling; NLP, natural language processing; 
NN, nearest neighbours; PCA, principal component analysis; RF, random forest; SVM, support vector machine.

Regularization algorithms
A type of supervised regression 
method that shrinks coefficient 
estimates to zero to avoid 
overfitting (for example, least 
absolute shrinkage and 
selection operator and ridge 
regression).

Hyperparameters
Variables that must be set prior 
to model construction by the 
user or by software default and 
can then be tuned during 
model construction to 
maximize accuracy.

Parameters
Variables that are ‘learned’ 
during model construction. 
Parameters differ between 
algorithms based on algorithm 
architecture.
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unsupervised models, parameters are tuned to mini-
mize the similarity between objects in different clusters 
and maximize the similarity between objects in the same 
clusters32.

Training and validating models. After the data are 
preprocessed and the most appropriate algorithm is 
selected, model training begins. Model training is an 
iterative process by which the model ‘learns’ to classify, 
regress or cluster the outcome variable. Through itera-
tions, the model tunes its parameters to minimize error. 
Supervised models have the benefit of tuning model 
parameters based on the ability to achieve the correct 
labelled outcome.

Ideally, supervised models are built and improved 
using two independent datasets: the training dataset 
and the validation dataset6,89. The training dataset is the 
initial input data on which the model is built. The val-
idation dataset is either a part of the training dataset 
that was reserved for validation, or an entirely separate 
dataset containing data with the same independent and 
dependent variables. The validation dataset is used to 
assess the performance of the initial model by giving an 
estimate of how accurately the model predicts the out-
come. The validation dataset can also be used to further 
tune model hyperparameters6. All ML models are built 
on a training dataset, but some lack a dataset on which 
they can be validated. In this case, the model serves only 
as a proof-of-concept. Even with a validation dataset, 
however, final model performance must be evaluated 
without tuning. If more than two datasets with labelled 
data are available, then the final model can be evaluated 
with a third dataset known as the test dataset6,89. Unlike 
the validation dataset, the test dataset is used to pro-
vide an unbiased evaluation of the final model perfor-
mance without hyperparameter tuning. At present, third  
datasets are rare in RAIDs research.

When a validation dataset is unavailable, a portion 
of the training data can be withdrawn from the orig-
inal dataset and used as a validation dataset. Splitting 
the training dataset into a training dataset and a vali-
dation dataset is known as holdout90,91. A common 
holdout approach uses 80% of the data for training 
and 20% of the data for validation. Another validation 
technique, k-fold cross-validation, optimizes splitting one 
dataset into a training and validation portion through 
resampling. With k-fold cross-validation, the data are 
split into a number of groups, k, and the model is run  
k times92. During each run, one of the groups is withheld 
as the validation dataset, and the remaining groups are 
combined and used as the training data. The model is 
evaluated during each run based on its ability to accu-
rately predict the validation data. Additional validation 
strategies for limited sample sizes have been reviewed 
elsewhere93.

Assessment of model performance. Several metrics are 
used to characterize supervised model performance. For 
classification, metrics include accuracy (the ratio of cor-
rect predictions to total predictions), sensitivity (the true 
positive rate) and specificity (the true negative rate)29,94. 
If the classification problem is binary (that is, there are 

two classes) these values are often represented using 
receiver operating characteristic (ROC) curves, where the 
false-positive rate (1 – specificity) is plotted on the x-axis 
and the true positive rate is plotted on the y-axis95. Each 
point on the ROC curve represents the false-positive 
rate and true positive rate at a specific classification 
threshold95. The ROC curve is a frequently employed 
evaluation tool for supervised modelling and describes 
a model’s ability to distinguish between classes. From the 
ROC curve, the area under the curve (AUC; also known as 
the area under the ROC curve (AUROC)) is calculated 
and represents the probability that the model can dis-
tinguish correct and incorrect classes (FiG. 4). A perfectly 
performing classifier has an AUC of 1.0, whereas a score 
of 0.5 indicates that the model’s performance is compa-
rable to random chance (guessing). For regression, mean 
squared error96–98, root mean squared error (RMSE)98,99 
and the coefficient of determination (R2)97,98,100 can be 
used to evaluate model performance. For clustering,  
it is difficult to validate the performance of these mod-
els consistently101,102, as unsupervised models are not  
contingent on labelled data.

Examples of machine learning use in rheumatic 
autoimmune inflammatory diseases
The increased use of ML in the analysis of RAIDs 
data6,21–23, cancer19,20, genetics103, transcriptomics103, bio-
logical networks104, drug discovery105 and autoimmune 
diseases106 demonstrates the potential utility and power 
of this analytical strategy. Below, we highlight the use 
of ML in RAIDs research to date, focusing on studies 
that demonstrate correct application of ML by preproc-
essing data, comparing ML models built using different 
algorithms, choosing the model with the best accuracy, 
cross-validating the model and/or validating the model 
in external datasets. For each type of data below, TABLE 1 
provides an example of a study employing one or more 
of these ‘good practice’ strategies.

Patient classification using electronic health records 
and clinical data
EHRs contain a wealth of information about individual 
patients and collective information about diseases107, and 
efforts are being made to analyse EHR data to determine 
characteristics of patient cohorts that could then enable 
prediction of future disease progression, drug utilization, 
comorbidities or additional medical needs. Although 
multiple studies have analysed RAIDs-related EHR 
data without the use of ML108–112, many examples exist 
of ML-based EHR analysis in RAIDs8–11,13,113–115. EHRs 
are inherently noisy, and a large part of EHR-based 
ML begins with language data transformation so that 
the classifier algorithm can interpret the data. Another 
challenge with EHR data is incorrect class labels (that is, 
RA or SLE). For example, the use of ICD codes alone to 
determine class labels can oversimplify disease identity 
and may result in false positives116,117.

A study compared multiple ML models to determine 
the most appropriate method for classifying patients with 
SLE from EHR data8. Medical notes from 662 patients 
(322 SLE, 340 healthy individuals) were obtained, fil-
tered based on presence of the word ‘rheumatol’, and 

Training dataset
The dataset used by 
supervised models to ‘learn’ to 
predict an outcome by viewing 
both the input and output 
variables in the data.

Validation dataset
A portion of the training 
dataset that is withdrawn to 
give an estimate of fit while 
tuning model parameters,  
or a separate dataset used to 
estimate model fit and tune 
parameters.

Holdout
The process of reserving some 
samples for training and some 
for validation from a single 
dataset.

k-fold cross-validation
An extension of model 
validation that partitions the 
data into complementary 
subsets when training, to 
perform parallel analyses  
on each subset.

Sensitivity
The proportion of the actual 
positives that are correctly 
identified. Also known as the 
true positive rate.

Specificity
The proportion of the actual 
negatives that are correctly 
identified. Also known as the 
true negative rate.

Receiver operating 
characteristic (ROC) curves
(ROC curve). A plot of the 
sensitivity against the 1 − 
specificity that is used to 
assess the performance  
of a binary classifier.

Area under the curve
(AUC). Generally refers to the 
area under the ROC curve, so it 
can also be referred to as the 
area under the ROC (AUROC).
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SLE samples were randomly sampled with replacement 
(bootstrapped) to create a balanced sample distribution. 
One hundred samples (50 SLE, 50 healthy individuals) 
were then removed from the balanced distribution to 
serve as the validation dataset and the remaining sam-
ples were used for training. Three independent NLP 
techniques (CUIs, BOWs and Word2Vec) were applied 
to the training data to extract relevant features. Once 
preprocessed, ML algorithms were applied in differing 
combinations, resulting in eight multistep models. Initial 
models from the training data were cross-validated and 
assessed for accuracy, and then assessed for accuracy in 
the validation dataset. Many of the ML models substan-
tially outperformed traditional ICD code classification. 
Ultimately, the RF classifier with either BOWs or CUIs 
matrices as inputs performed best, with accuracy of 
either combination ≥95% and AUC >0.979. This study 
serves as an example of two important concepts: first, 
the use of ML in a multistep or combination approach 
by employing an initial ML algorithm for data transfor-
mation (preprocessing) and a subsequent ML algorithm 
for classification, and second, splitting the initial data 
into a training set and a validation set, when an external 
validation set is not available.

Another study classified patients with RA based on 
EHR-derived disease phenotypes and selected clinical 
codes (features) that had higher frequencies in patients 
with RA than in healthy individuals10. An RF feature 
selection method was employed to reduce the number 
of input predictors by ranking the importance of clin-
ical codes (features) and selecting the top features10. 
This pipeline reduced the initial 43,100 features to  

37 groups of clinical codes. Then, the most important 
model-selected features were aggregated with other 
codes, if determined to be sufficiently similar. A decision 
tree was then trained on these features to classify patients 
with RA. An external dataset was used for model vali-
dation; the decision tree model had 94.6% specificity, 
86.2% sensitivity and 92.3% accuracy in its classifica-
tion of patients with RA. This study appropriately uti-
lizes feature selection and employs an external dataset 
for validation.

A series of studies demonstrated the potential power 
of ML classification in EHR data when the model is 
refined over time and can be evaluated in three inde-
pendent datasets118,119. The initial EHR-derived penal-
ized logistic regression model was built to classify RA 
using data derived from one independent dataset (500 
samples for training and 29,432 samples for valida-
tion)118, then later refined in the same dataset through 
cross-validation119, and ultimately evaluated in two suf-
ficiently large independent datasets, achieving AUCs 
>0.92 in both datasets119. The original penalized logistic 
reg ression model that compared ML classification was  
built with ICD codes or other codified data in EHRs 
alone, EHR data extracted by NLP alone or a combination  
of the two118.

Others have attempted to develop a prognostic tool 
based on EHR data. For example, a predictive pipe-
line was developed that would improve diagnosis and 
early identification of patients with AS based on demo-
graphic, biomarker and clinical information for over 
6,000 patients with AS and nearly 50,000 controls from 
the Truven database114. The authors first used mutual 

Random chance

FPR

TP
R

True positives

True positives + false negatives

Good classifier Poor classifier

AUCAUCAUC

TPR (sensitivity) =

False positives

True negatives + false positives
FPR (1 – specificity) =

True negatives

True negatives + false positives
Specificity =

Rate at which
TPR = FPR

Fig. 4 | Receiver operating characteristic curves are used to assess binary classification performance. Receiver 
operating characteristic (ROC) curves plot the true positive rate (TPR; that is, the sensitivity) against the false positive rate 
(FPR, which is equivalent to 1 − specificity)95,214. The TPR is the ratio of positives that are correctly classified to all positive 
samples within the dataset. The FPR is the ratio of false positives that are identified to all negative identifications. ROC 
curves can illustrate that the classifier is no better than random chance because the TPR = FPR or that classification is good 
when the AUC >0.5 or poor when the AUC <0.5.
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Table 1 | Examples of machine learning application to the classification of patients with rheumatic autoimmune inflammatory diseases

Public­
ation

Disease Aim 
(analysis 
type)

Sample size Type of 
Analysis

Input data 
type

Preproc essing Algorithms 
compared

Final 
model 
selected

Validation Assessment

Turner 
et al. 
(2017)8

SLE Classify 
patients 
with SLE

Total: 322 
patients with 
SLE; 340 
controls

Training: 
(bootstrapped 
to get  
equal 
numbers  
and then 
removed  
100 for 
validation) 
290 patients 
with SLE; 290 
controls

Validation:  
50 patients 
with SLE;  
50 controls

Classification Medical notes Bootstrap 
sampling and 
NLP (CUIs, 
BOWs and 
Word2Vec)

RF, naive 
Bayes, 
SVM and 
neural net

CUIs and 
RF or 
BOWs 
and RF

5-fold cross- 
validation, 
100 samples 
removed before 
training for 
validation set

CUIs + RF:

Accuracy =  
95%

AUC =  
0.979

BOWs + RF:

Accuracy =  
95.25%

AUC =  
0.994

Gossec 
et al. 
(2019)145

RA and AS Classify 
presence 
or 
absence 
of flare in 
patients 
with RA  
or AS

82 patients 
with RA;  
73 patients 
with AS

Classification Activity 
data (steps/
minute)

Bootstrap 
sampling and 
normalization

Naive 
Bayes and 
RF

Naive 
Bayes

Split dataset: 
70% for training 
and 30% for 
validation

Sensitivity =  
96%

Specificity =  
97%

Robinson 
et al. 
(2020)149

SLE Classify 
patients 
with 
juvenile- 
onset SLE

67 patients 
with SLE;  
39 controls

Step 1: 
classification

Demographic 
data and 
PBMC flow 
cytometry 
data

Preproc essing 
not described

Balanced 
RF and 
sparse 
PLS-DA

Balanced 
RF

10-fold cross- 
validation; 
also confirmed 
significance 
of balanced 
RF-selected 
variables 
with logistic 
regression

Sensitivity =  
89.6%

Specificity =  
82.1%

AUC =  
0.909

Stratify 
patients 
with 
juvenile- 
onset SLE

67 patients 
with SLE

Step 2: 
clustering

Significant 
parameters 
(8/28 immune 
cell subsets 
from flow 
cytometry 
data) 
identified 
from 
balanced 
RF, sparse 
PLS-DA 
and logistic 
regression 
models

The step 1 
model was 
used as feature 
selection

No 
comparison

k-means 
clustering

No formal 
validation 
because of 
unsupervised 
learning

Mathematical: 
none  
because 
unsupervised 
clustering

Biological: 
group 1  
from k-means 
clustering  
had more  
active  
disease 
over time, 
suggesting  
that clustering 
with the  
8-cell type 
signature  
could  
further  
separate 
patients

Ceccarelli 
et al. 
(2018)59

SLE Classify 
patients 
with and 
without 
erosive 
arthritis

120 patients 
with SLE

Classification Demographic, 
clinical, 
laboratory 
and 
treatment 
data

Forward 
wrapper 
method to 
select features

Logistic 
regression 
and 
decision 
trees

Forward 
wrapper 
and 
logistic 
regression

Leave- 
one-out 
validation for 
hyperpa rameter 
tuning

AUC = 0.86
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information, a statistic that measures the mutual 
dependence of two features120, to select features for 
model input. After feature selection, they specified two 
analysis time periods (segments), so that they could pre-
dict whether patients from the first time period would 
be diagnosed with AS in the second time period. Patient 
data from segment 1 were split into the AS population 
and the matched control population, and used to train 
the first model (model A), which was evaluated with 

the remaining segment 1 data. Then, the second model 
(model B) was trained on the same AS cases as model A, 
but the false positives incorrectly labelled as AS cases by 
model A became the controls. As such, the second model 
was used to assess prediction accuracy with more chal-
lenging cases. Multiple ML classifiers were compared 
in order to determine the most accurate classifier for 
both model A and model B. When cross-validated, the 
gradient-boosting classifier was the top-performer for 

Public­
ation

Disease Aim 
(analysis 
type)

Sample size Type of 
Analysis

Input data 
type

Preproc essing Algorithms 
compared

Final 
model 
selected

Validation Assessment

Patrick 
et al. 
(2019)186

Psoriasis 
(and other 
inflammatory 
skin diseases 
such as SLE, 
scleroderma, 
myositis and 
myasthenia 
gravis)

Classify 
drugs for 
immune- 
mediated 
skin 
conditions

2,814 drugs 
mined from 
the literature

Classification Drug- 
vocabulary 
matrices 
derived from 
PubMed 
abstracts 
(20 million 
abstracts, 
with  
3.3 billion 
words)

NLP word 
embedding

GBM, 
logistic 
regression, 
RF, LASSO 
regression, 
nearest 
shrunken 
centroid 
and 
PLS-DA

PLS-DA 10-fold cross- 
validation; 
applied 
cross-validated 
model to a test 
dataset, and 
were able to 
confirm that 
the targets of  
model- 
predicted 
drugs were 
differentially 
expressed 
in psoriasis 
samples

AUC = 0.928

Figgett 
et al. 
(2019)195

SLE Identify 
subsets of 
patients 
with SLE

161 patients 
with SLE

Step 1: 
clustering

Gene 
expression 
data 
(RNA-seq)

Normalization 
of gene 
expression 
data and batch 
correction;  
Gap and 
Davies–Bouldin 
clustering 
evaluations 
to determine 
the number of 
clusters

k-means 
clustering, 
PLS-DA 
and PCA

k-means 
clustering

No formal 
validation 
because of 
unsupervised 
learning, 
but PLS-DA 
achieved 
similar clusters 
to k-means 
clustering

Mathematical: 
none because 
unsupervised 
clustering

Biological: 
gene set 
enrichment 
analysis to 
determine the 
transcriptomic 
profile of 
each cluster; 
different 
clinical 
features found 
in each cluster, 
suggesting 
the clusters 
could 
represent 
different 
clinical 
manifestations 
of disease

SLE Classify 
subsets of 
patients 
with SLE

Patients with 
SLE

Step 2: 
classification

Gene 
expression 
data 
(RNA-seq) 
with cluster 
labelling from 
k-means

Normalization 
of gene 
expression 
data and batch 
correction

ECOC 
SVM, RF

Both 
ECOC 
SVM and 
RF were 
equally 
accurate

ECOC SVM: 
validated in 
independent 
cases from 
additional 
datasets

RF: repeated 
double cross- 
validation

ECOC SVM: 
accuracy  
= 88%

RF: accuracy 
 = 88%

AS, ankylosing spondylitis; AUC, area under the curve; BOWs, bag of words; CUIs, concept unique identifiers; ECOC, error-correcting output code; GBM, gradient 
boosting machine; LASSO, least absolute shrinkage and selection operator; ML, machine learning; NLP, natural language processing; PBMC, peripheral blood 
mononuclear cell; PCA, principal component analysis; PLS-DA, partial least squares discriminant analysis; RA, rheumatoid arthritis; RF, random forest; RNA-seq, 
RNA sequencing; SLE, systemic lupus erythematosus; SVM, support vector machine. aThe table includes select examples of ML models built with each type of input 
data that demonstrate proper ML application by preprocessing data, comparing ML models built using different algorithms and choosing the model with the best 
accuracy, cross-validating the model, and/or validating the model in external datasets.

Table 1 (cont.) | Examples of machine learning application to the classification of patients with rheumatic autoimmune inflammatory diseases
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model A, with an AUC of 0.81 when predicting AS. The 
extra trees model, another ensemble method121, yielded 
the highest AUC of 0.79 for model B. Both trained 
models were developed to be applied sequentially on 
other independent datasets. The first model has the 
ability to exclude patients that are unlikely to have AS 
and the second has the ability to remove false positives. 
This approach of applying the results of one model to 
another model can help to mitigate the shortcomings of 
either model. The predictive accuracy of model A and 
model B was then evaluated by determining whether 
patients predicted to have AS in the first segment were 
correctly diagnosed with AS in the second time period. 
Together, model A and model B generated a positive 
predictive value more than twice that of a clinical model 
based on international AS diagnoses criteria, albeit the 
resulting positive predictive value was only 6.24%. This 
study demonstrates that good model accuracy in origi-
nal training and validation data does not guarantee high 
performance in the testing dataset, despite comparison 
of multiple classifiers and the use of a multistep model, 
illustrating the necessity of external validation before 
proceeding to clinical application. However, it should 
be noted that the positive predictive value of 6.24% was 
improved compared to the diagnostic accuracy achieved 
using a model built on clinical parameters described 
by the Assessment of SpondyloArthritis international 
Society114.

ML has also been used in RAIDs to classify patients 
with differing disease manifestations, using clinical data. 
In one example, linear discriminant analysis was used for 
selection of features that best separated patients with pSS 
based on fatigue levels (high or low fatigue)122. The nine 
selected clinical features were used to build an SVM clas-
sifier that achieved an AUC of 0.725, which was higher 
than the SVM classifier that included all 57 features122, 
demonstrating the power of feature selection. Another 
study used medical records data (including demographic 
and laboratory data) as input for both a decision tree 
model and an RF model that were built to distinguish 
pSS from dry eye disease123. Using 89 features as input, 
both the decision tree and the RF models achieved high 
sensitivity, but the decision tree model had lower speci-
ficity. Although the RF model was able to classify patients 
with pSS accurately with all variables, it did not perform 
as well when only a subset of the variables was used123, 
which demonstrates the need to compare models with 
differing numbers of features in order to achieve the best 
combination of variables, as prediction power might not 
always by improved by reducing the number of variables. 
Furthermore, a form of LASSO was utilized to classify 
RA disease activity in patients based on claims data 
only, claims and medication data, or a combination of 
claims, medication and laboratory data107. The number 
of variables differed between models. The model based 
on claims, medications and laboratory data achieved the 
highest sensitivity (83.1%), but the claims data model 
achieved the highest specificity (74.7%), again showing 
the benefit of comparing different models. Conversely, 
another RA study using patient characteristics, clinical 
outcomes, patient-reported outcomes, laboratory val-
ues and medication was input into a deep neural net 

to predict disease activity124. Similarly, LASSO–logistic 
regression was employed to classify patients with SLE 
from those with other rheumatological conditions, based 
on clinical and serological data125. The model, which was 
optimized with 10-fold cross-validation on the training 
data of 802 adults, performed well in a validation dataset 
comprising 502 patients with SLE and 143 control indi-
viduals. Finally, a logistic regression classifier was built 
to determine whether SLE pathogenesis is neutrophil- or 
lymphocyte-driven, using clinical variables126. Although 
the model was built with clinical data, the class labels 
(neutrophil-driven SLE or lymphocyte-driven SLE) 
were assigned to samples based on their gene expres-
sion profile127. The logistic regression model was trained 
on one cohort and cross-validated with 1,000 iterations 
before being tested on a separate cohort. Evaluation of 
the model with the test dataset demonstrated an AUC  
of 0.87. Overall, this study provides an example of cor-
rect employment of ML in which logistic regression 
seems to successfully classify patients with SLE as having 
neutrophil-driven or lymphocyte-driven SLE. Although 
models derived from different algorithms were not com-
pared for classification, the investigators did examine 
different variable combinations as input for the logis-
tic regression model, and optimized the number of  
iterations for cross-validation.

Patient classification using imaging and biometric 
data
ML can be employed to improve the accuracy of 
imaging-based diagnosis, evaluation and outcome pre-
diction in RAIDs. Neural networks and deep learning 
have been employed in multiple studies aimed at diag-
nosing or grading RA disease activity based on imaging 
data128–136. Deep learning has also been used for image 
analysis in pSS to either classify the grade of pSS from sal-
ivary gland ultrasonography137 or diagnose pSS from CT 
images138. In one study, feature selection was employed 
before model construction with an SVM algorithm and 
cross-validation to classify patients with neuropsychiat-
ric SLE from controls using functional MRI data139. SVM 
has also been used to estimate the progression score of 
RA joints on X-ray images140 and predict radiographic 
progression in AS141. In addition, ensemble algorithms 
have been investigated to classify patients with RA 
based on thermal measurement of hand joints142 and 
to classify neuropsychiatric SLE based on connectivity  
disturbances measured by functional MRI143.

The accuracy of many of these models has been 
assessed based on their agreement with the analysis of 
an expert rheumatologist. As diagnosis can be variable 
among rheumatologists, constructing a model that can 
consistently grade arthritis severity could help to reduce 
variability within the field128. To further reduce varia-
bility, future ML-guided image analysis models could 
be refined by comparing classification by the model 
with that of multiple pooled experts. Altogether, the 
present studies demonstrate the utility of training and 
validation, where the algorithm tunes its parameters 
to achieve the same diagnosis as that of the examining 
physician. However, if an ML model consistently disa-
grees with a physician’s diagnosis, it would be pertinent 

Testing dataset
An independent dataset  
that is used to provide an 
unbiased evaluation of the  
final model fit.
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to examine whether model-observed patterns in the data 
could be used to stratify patient outcomes more effec-
tively, as a clinician could be biased by current knowl-
edge, or whether the model’s predictions are a result of 
noise. Indeed, a cross-validated deep learning model 
was recently found to detect AS from CT images with a 
greater sensitivity and specificity than a radiologist with 
9 years of experience144.

Bayesian algorithms have been employed to assess the 
association between flares and physical activity in RA 
and AS145. Physical activity, recorded as steps per min-
ute, was measured over 3 months by wearable activity 
trackers and used as input data to classify the presence 
or absence of a flare. The dataset was appropriately split 
into training and validation datasets and used to build a 
naive Bayes model that classified patient-reported flares 
with a sensitivity of 96% and specificity of 97%145. A sim-
ilar study used ML to develop a single-sensor wearable 
diagnostic that could differentiate rest (sitting versus 
lying down) and activity (walking versus standing) data 
in patients with RA146. Both studies performed data pre-
processing and selected features for model construction. 
In addition, both studies compared different models: the 
first analysed the data with naive Bayes and RF145, and 
the second compared RF, SVM and deep learning for 
their ability to classify these activity patterns in patients 
with RA and healthy controls146. If either approach was 
validated in a large, independent population, phys-
ical activity tracking might provide a means of flare  
prediction or disease activity classification in RA and AS.

Patient classification using urinalysis, flow 
cytometry and genomics
Two studies used urinalysis data to build models for 
patient classification. In the first study, a diagnostic was 
developed to determine class, activity and chronicity 
of kidney disease in patients with lupus nephritis (LN) 
based on measurement of urine protein levels147. Neural 
networks were trained on normalized protein abundance 
and the resulting models were able to classify patients in 
each LN World Health Organization (WHO) histolog-
ical class with a sensitivity of >86%147. Trained neural 
networks were able to predict the renal chronicity index 
with a Pearson’s correlation coefficient of 0.87 (REF.147). In 
addition, this study compared the sensitivity of individ-
ual parameters (including individual protein spot, age, 
gender and race) in determining LN class, activity and 
chronicity. A combination of six protein spots (α-1 acid 
glycoprotein, zinc α-2 glycoprotein, IgG κ light chain and  
two spots of α1 microglobulin) demonstrated high sensi-
tivity for each output metric, but when employed indi-
vidually were unable to classify patients147. The neural 
network classifier with the median performance follow-
ing cross-validation was selected. Although this study 
compared ML outcomes with different numbers of input 
features and employed cross-validation, it was limited by 
a small sample size of 20 patients and lacked an external 
dataset for validation. The second study similarly sought 
to classify patients with LN into their WHO histological 
class based on clinical variables, such as levels of urinary 
N-acetyl-β-d-glucosaminidase enzyme, creatinine, C3 
and serum urate148. In this study, an RF model could 

classify patients into their WHO histological class (II, 
III/IV and V) with accuracies of 51.3–63.7%, which was 
better than random classification (33.3%). Neither study 
compared different algorithms for classification, but the 
second study was less likely to overfit the data because 
of a substantially larger sample size.

Another study used both demographic data and 
flow cytometry data of 28 immune cell subsets from 
peripheral blood mononuclear cells to first classify and 
then cluster 67 patients with juvenile-onset SLE149. Two 
ML algorithms (balanced RF and sparse PLS-DA) were 
trained separately and cross-validated to classify the 
patients and determine the most important features. 
The balanced RF model achieved classification accu-
racy of 87.8%. Univariate logistic regression was used 
as a statistical technique to confirm the contribution 
of the immune cell subsets to juvenile-onset SLE, but 
not as an ML classifier. Important parameters identified 
from both supervised classification algorithms, as well 
as those identified by univariate logistic regression, were 
compared and the eight parameters in common among 
the three techniques were used as input to the k-means 
clustering algorithm. Four clusters were derived, and 
there were significant differences in T cell frequencies 
in the resulting patient clusters, whereas there were no 
statistically significant differences in demographic and 
treatment characteristics. This study serves to illustrate 
that parameters derived from supervised learning can 
be further used to find new associations or clusters in 
the data using unsupervised learning. Moreover, this 
study compares and combines different algorithms for 
parameter selection. In addition, this work reinforces 
the idea that it might be more advantageous to classify 
patients on the basis of biological or molecular disease 
characteristics than on clinical or demographic param-
eters150. However, the findings must still be validated in  
an independent dataset150.

ML analysis of genomic data, especially because of 
its high dimensionality, is increasingly being employed. 
One study applied various ML algorithms to select 
a microRNA panel that classifies patients as having 
RA, SLE or neither disease151. Small RNA-sequencing 
(RNA-seq) data from 167 RA and 91 control samples 
were preprocessed and then used as input into an RF 
algorithm. The RF algorithm was used as a feature selec-
tion technique to identify microRNAs that were differ-
entially expressed in RA samples, and then the ability 
of the differentially expressed microRNAs to classify 
patients with RA in the same cohort was evaluated using 
LASSO and logistic regression. Based on the results, six 
microRNAs were selected that classified RA in the RA 
validation cohort (32 patients with RA and 32 control 
individuals) with an AUC of 0.71 and SLE in the SLE 
validation cohort (12 patients with SLE) with an AUC 
of 0.80. However, the model could not reliably distin-
guish patients with SLE from those with RA. Altogether, 
this study serves as a good example of preprocessing, 
employing ML models in multiple steps (for both fea-
ture selection and classification), and then subsequent 
validation.

A further study used a generalized linear model 
(GLM), a type of linear regression, to classify whether 
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patients with SLE had active or inactive disease based 
on myeloid cell gene expression as compared with other 
cellular gene signatures152. Although the study was 
limited by small sample numbers and validation in an 
external dataset is needed, the myeloid cell signature 
outperformed the low-density granulocyte signature and  
was similar to the plasma cell signature in classifying 
patients by disease activity, as determined by the SLE 
Disease Activity Index. This study demonstrates the util-
ity of investigator-based feature selection when there is a 
specific hypothesis to be tested. A third study compared 
GLM, RF, k-NN, and hierarchical clustering models 
built using scaled enrichment scores of gene modules 
derived from a gene co-expression approach with those 
built using raw gene expression data, for their ability to 
accurately classify patients as having active SLE or inac-
tive SLE across independent data sets153. RF classification 
using input gene module enrichment scores achieved the 
highest accuracy among the supervised models follow-
ing 10-fold cross-validation, although all supervised 
classifiers performed well. By contrast, attempts to dis-
criminate active and inactive disease in patients using 
hierarchical clustering with the same input gene mod-
ules was unsuccessful. This study demonstrates the util-
ity of comparing both differing preprocessing methods 
(raw gene expression versus gene module enrichment 
scores) and multiple supervised and/or unsupervised 
models to determine the most appropriate model for the 
dataset and desired outcome. However, external testing 
is still necessary.

ML has also been employed to predict ancestry of 
patients with SLE using gene expression data28. Gene 
expression values for 752 genes were used as input 
data for logistic regression, SVM and elastic GLM 
algorithms. These genes were chosen because they are 
members of gene modules with a demonstrated ability 
to separate patients by ancestry — an example of fea-
ture selection based on prior knowledge. After 10-fold 
cross-validation, SVM achieved an accuracy of 96%, 
although all models performed well. The 25 most impor-
tant gene predictors in the SVM model demonstrated 
that the classification was based primarily on B cell gene 
expression differences between patients with SLE of 
African and European ancestry. Although not validated 
in an independent testing dataset, the 25 most important 
predictors align with previous reports of B cell perturba-
tions in patients with SLE who are of African ancestry, 
which, coupled with the sufficiently large sample size, 
give more credence to this study.

An additional study used gene expression to refine 
histological disease subtyping of patients with RA154. 
First, expression levels for the 500 most variably 
expressed genes derived from 45 synovial biopsy sam-
ples (6 control individuals and 39 patients with RA) were 
used to cluster the patients. Consensus clustering, an 
ensemble clustering technique155, revealed three clusters 
of patients, with the optimal number of clusters evalu-
ated by statistical measures, and the appropriateness of 
the clusters confirmed by PCA. Patients from the three 
clusters were then labelled as either the low-, mixed- 
or high-inflammatory subtype based on histological 
evaluation of the biopsy sample from the same patient.  

The identity of each cluster, which was assigned as a dif-
ferent RA subtype, was confirmed with analysis of the 
functional enrichment of the differentially expressed 
genes that characterized each cluster21,154. The three sub-
types derived from gene expression clustering were then 
used as the patient labels for classification6,21,154. Synovial 
histological features of the same 45 biopsy samples were 
used as input data to train several binary SVM classifiers 
to predict one labelled inflammatory subtype from the 
other two. The cross-validated model based on histo-
logical score input performed best (AUC = 0.88) when 
classifying the high-inflammatory subtype from the 
other two154. The model was less successful at classi-
fying the mixed-inflammatory subtype (AUC = 0.59) 
from the others154. After cross-validation, the developed 
SVM models were used to predict the gene expression 
subtype of the remaining 82 synovial samples. However, 
there is still a need to confirm whether the subtype pre-
dictions were correct, as gene expression data of these 
samples were not available. The development of this 
model demonstrates that ML can be used to determine 
the histological features that are able to best predict the  
molecular phenotype of synovial samples and how 
histological features can then be used to predict gene  
expression profiles in patients with RA21.

Classification of early or late flare in patients with 
SLE by gene expression alone has been compared  
with classification with other clinical features156. Four 
independent RF models were built using either blood 
gene expression data (enrichment of inflammatory gene 
modules in individual patients with SLE and control 
individuals), flow cytometry data (percentage of inflam-
matory cell populations in the blood), clinical data (SLE 
Disease Activity Index, clinical–serological markers 
of SLE) and soluble mediators (enzyme-linked immu-
nosorbent assay and other analyte measurements of 
cytokines). Noisy variables were pruned and each model 
was built on 1–3 variables. In this example, the model 
based on flow cytometry measurements was the most 
accurate and that based on the gene expression module 
was the least accurate. Understanding which type of data 
is most useful for flare prediction could greatly improve 
future clinical practice; however, this proof-of-concept 
study was limited by a small sample size (n = 21 early 
flare, n = 13 late flare), cross-validation was not reported, 
and the models lacked independent test datasets.

Risk classification and outcome prediction
Genome-wide association studies have identified genetic 
susceptibility loci for SLE27,157,158, RA27,159, AS27,160, PsA27,161 
and pSS162. However, the role of single nucleotide pol-
ymorphisms (SNPs) in disease progression is poorly 
understood. ML offers another possible modality for 
identifying disease risk markers using SNPs and genetic 
variants. In a Swedish study, ML was employed to clas-
sify patients with SLE using SNP data and subsequently 
predict genetic variants that confer risk of SLE163. An RF 
classifier was built using genotype data (134,523 SNPs) 
from 1,160 patients with SLE and 2,711 control indi-
viduals. The resulting cross-validated model classified 
patients with SLE with an AUC of 0.78. When the model 
was used for classification of LN alone, the classification 
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achieved an AUC of 0.91. Then, an RF model was devel-
oped to calculate gene importance scores and identify 
risk genes, based on the classification performance  
of those genes. The model identified 40 risk genes, 25 of 
which were already known to be linked to SLE163. The 
risk genes predicted by the model were compared with 
the top 40 genes determined by single-SNP association 
analysis and 15 genes were shared by the two methods. 
The overlap of these 15 genes between the ML approach 
and a more standard SNP analysis technique suggests 
that ML might aid in the identification of novel risk 
genes or the validation of previously identified loci. In 
another study, RF and logistic regression were employed 
to predict genetic interactions between identified risk 
genes in RA164. However, it has been suggested that 
although RF models could be used to prescreen risk 
loci, statistical analysis with logistic regression is neces-
sary to determine genotype combinations that confer a 
high risk165. There are conflicting reports as to whether 
logistic regression or penalized logistic regression are 
advantageous compared with standard procedures to 
identify risk loci166,167. In addition, it is difficult to eval-
uate whether ML or the more standard approaches 
are most accurate for prediction of risk genes, but the 
RF method might be able to overcome linkage dise-
quilibrium (the non-random association of alleles) by 
determining the importance of any given gene using 
many different decision trees163. Although ML has been 
employed in this context, it remains unclear whether 
RF or logistic regression is best suited for identification 
of risk genes. Instead, one might consider using ML 
to classify patients based on risk genes that have been  
identified by standard analytical methods.

ML can also be used to predict future outcomes, 
including resulting organ damage. For example, a super-
vised artificial neural network model was used to iden-
tify risk of chronic organ damage in SLE78. This model 
incorporated demographic data, laboratory parameters, 
and clinical parameters and was trained on two classes: 
‘controls’, which include patients with SLE who had a 
baseline damage index of zero and did not develop dam-
age, and ‘cases’, which include patients with SLE who had 
a baseline damage index of zero and subsequently devel-
oped damage. The model was trained until the AUC on 
the labelled data exceeded 0.95. The model’s ability to 
generalize was also evaluated using eightfold validation, 
which yielded a final sensitivity of 74%. The same group 
developed ML models to classify patients with SLE with 
or without erosive arthritis59. Features were first selected 
using the forward wrapper method, and logistic regres-
sion or decision trees were employed for classification. 
Both ML models were chosen because of their interpret-
ability and suitability for smaller sample sizes, unlike 
neural networks59. The forward wrapper and logistic 
regression model performed better than the forward 
wrapper and decision tree model and achieved an AUC 
of 0.806. However, both models achieved higher AUCs 
when implemented with the forward wrapper method in 
comparison with using only the classifier, demonstrating 
an appropriate use of feature selection.

Many patients with RAIDs are at risk of cardio-
vascular disease. Artificial neural networks have been 

employed to predict risk of cardiovascular events in 
pSS, using clinical and serological information as 
input data168. Other studies have similarly used ML to 
identify patients with PsA169 or AS170 who are at a high 
risk of cardiovascular disease and to predict risk of 
atherosclerosis171 or hospital readmission172 in patients 
with SLE. Of note, the RF ML model used in the pre-
diction of cardiovascular risk for patients with AS was 
found to be more discriminative than all but one of the 
seven traditional predictors proposed by the EULAR170. 
In addition, ML was used to predict pregnancy out-
comes in patients with SLE with preeclampsia (n = 21) 
and those with no known complications (n = 45)173. 
Eighteen ML models were built using one of three dif-
ferent inputs (transcriptomic data only, laboratory data 
or clinical data, or combined laboratory or clinical and 
transcriptomic data) and one of six different ML algo-
rithms. Data preprocessing prior to application of ML 
algorithms involved the removal of unannotated tran-
scripts and highly correlated genes. The six models built 
on transcriptomics data only had a mean accuracy of 
74.2% compared with an average accuracy of 67.8% for 
those built on laboratory or clinical parameters. Use of 
both transcriptomic and clinical parameters for model 
construction increased prediction accuracy to 75.7%. 
The kernel PLS model achieved the highest AUC when 
only transcriptomic data were used, whereas the PLS 
regression for GLMs method performed slightly better 
for the combined input. Both models show potential for 
risk prediction in SLE, as they were appropriately com-
pared with many different models and highly collinear 
features were removed; however, a larger sample size 
would provide more reliable results, which additionally 
need to be validated with an external cohort.

Finally, ML has been applied to predict renal flare 
in patients with LN who achieved response after initial 
therapy174. This study comprising 1,694 patients used 
demographic, clinical, serological, histological and 
therapeutic variables as input into an eXtreme Gradient 
Boosting (XGBoost) algorithm174, which is an ensemble 
of decision trees and GBM175. The 1,694 patients with 
LN were split so that 70% were used for training and 
the remaining 30% were used for validation. In addi-
tion, fivefold cross-validation was employed. The vali-
dated model achieved an AUC of 0.819 and was used to 
identify important parameters for other clinical models. 
Although it is necessary to test this model in an inde-
pendent dataset, the sample sizes of the training and 
holdout validation sets are sufficiently large, and the 
variables determined most important by the model have 
been previously implicated in LN174, suggesting that the 
model is biologically accurate.

Predicting treatment response or candidates for 
treatment
In the era of expensive biologics, the ability to accurately 
predict non-responders to targeted therapies would be 
beneficial for patients and clinicians, so that focus could 
shift to treatments that are more likely to be effective. 
A 2014 challenge invited participants to design models 
that can predict response to TNF-neutralizing therapy 
in patients with RA176,177. Integrated demographic data, 
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treatment history, SNP data and baseline disease activ-
ity for 1,892 patients with RA were employed to train 
the models. One group separated patients based on the 
TNF-neutralizing treatment (adalimumab, etanercept 
or infliximab) they received and constructed multiple 
supervised ML models for each treatment to predict 
quantitative change in RA disease activity score25. The 
disease activity score value was then used to classify 
patients as treatment responders or non-responders. 
Models built from Gaussian process regression (a type 
of Bayesian regression), gradient-boosting, logistic 
regression or RF algorithms were compared. Following 
cross-validation, the Gaussian process regression 
model was most robust and could predict treatment 
non-response amongst patients with RA of European 
ancestry with an accuracy of 78%25. In an independent 
testing dataset of 680 patients, the model achieved an 
AUC of 0.615. The strengths and limitations of this study 
have been reviewed previously176.

In another study, ML models were built to predict 
anti-TNF biologic therapy response in patients with RA 
using either gene expression or methylation data178. The 
RF model built using differentially expressed genes from 
RA peripheral blood mononuclear cells as features was 
most accurate in predicting response to adalimumab, 
whereas the RF model built using differentially meth-
ylated CpG positions was most accurate at predicting 
response to etanercept. However, external validation 
with a larger sample size is needed179, as the authors per-
formed validation with only nine external samples, and 
the study, like most performed in RAIDs, is limited by 
a small sample size, with only 40 patients in each treat-
ment group used in model construction178. Others have 
also proposed the application of ML to aid in treatment 
of RA with biologics. For example, in a conference pro-
ceeding, SVM and deep learning were used to predict 
whether patients with RA received increased doses of 
infliximab180. Similarly, a neural net model was used to 
predict patients with AS who would use TNF inhibitors 
early in disease duration181. In addition, ML is being 
used to identify treatment response gene signatures in 
clinical trials of ustekinumab in SLE182 and has been 
used to predict additional benefit from treatment with  
secukinumab in patients with PsA183.

As a first step in developing a decision support tool 
to inform LN therapy, ML was employed to identify bio-
markers of LN treatment response184. Urine cytokines 
were measured in a subset of patients with biopsy- 
confirmed LN before induction therapy. Univariate asso-
ciations between clinical factors (such as demographics 
and drugs) and novel urine protein biomarkers were 
calculated using logistic regression to determine their 
individual predictive power, as assessed by the AUC. 
These univariate models were compared with RF clas-
sifiers generated with either clinical variables only or 
combined data (clinical variables and urinary biomark-
ers). Classification with single biomarkers was generally 
unsuccessful. Classification with RF models, built using 
a panel of biomarkers, achieved greater sensitivity than 
the univariate models. Of note, four of the five statisti-
cally significant biomarkers (except glomerular filtration 
rate) in the univariate models were also in the top five 

most important features for the RF model184. RF models 
using both traditional and urinary biomarkers as fea-
tures had improved sensitivity compared with those built 
with clinical biomarkers only. Although not validated in 
an external dataset, the authors report that when the data 
were separated into training and testing portions, the RF 
model did not overfit184.

Similarly, ML was employed to predict flares fol-
lowing drug tapering in 41 patients with RA185. Patient 
characteristics, disease activity data, medication data 
and laboratory data derived from a clinical trial were 
used as input data. Although limited by a small sample 
size, the study evaluated multiple ML models (includ-
ing logistic regression, naive Bayes, k-NN and RF) for 
their ability to accurately predict flares. In addition, the 
study employed a multistep (stacking) model, in which 
the results of the four classifiers were used as variables 
in a logistic regression model. After cross-validation, the 
stacking logistic regression model achieved the highest 
AUC of 0.81. Importantly, this study illustrates that ML 
has the potential to aid in the analysis of clinical trial 
data, yet, as suggested by the authors, the models need 
to be validated in a larger cohort and, ideally, employed 
in a clinical care setting, to determine whether they are  
applicable in settings outside of tightly controlled 
trials185.

ML techniques have also been used to predict 
drug repurposing candidates for immune-mediated 
cutaneous diseases, including psoriasis, SLE, scle-
roderma, myositis and myasthenia gravis186. These 
models involved a multistep ML process. An NLP 
word-embedding approach was employed to generate 
features, allowing the authors to extract drug-vocabulary 
matrices from ~20 million PubMed abstracts. Many dif-
ferent ML algorithms were then employed to classify the 
drug–disease relationship from the input NLP-derived 
drug-vocabulary matrices. Following cross-validation, 
the PLS-DA model achieved the highest AUC. When 
tested on unlabelled drug-vocabulary matrices, the 
PLS-DA model successfully identified drugs currently 
used for psoriasis and predicted additional candidates. 
Of note, the targets of the predicted candidate drugs 
were identified to be enriched in differentially expressed 
genes from psoriasis186, supporting the potential for ML 
to aid in drug discovery and generate new hypotheses.

Other studies have used ML to inform drug discov-
ery105,187,188 or predict drug repurposing candidates189. ML 
tools have been used to probe the structural similarity 
of drugs or targets24 or create drug networks containing 
drugs that are predicted to have similar mechanisms 
of action190. As these networks grow and incorporate 
multiple types of data, ML is crucial for the synthesis 
of multimodal information. ML algorithms have also 
been used to construct databases of drug–adverse 
effect pairs, primarily by text mining191, or to predict 
potential drug-associated adverse events192. Many ML 
algorithms are being employed to understand phar-
macological properties of drugs by identifying patterns 
in drug-induced transcriptomic profiles193. Additional 
repurposing techniques that incorporate ML and that 
are applicable to or have been utilized in RAIDs have 
been reviewed eslewhere24,194.
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Patient clustering to determine disease subtypes
Molecular subtyping of patients is often thought of as 
major step in achieving precision medicine. However, 
validating the subtypes, which may have been deter-
mined by supervised or clustering models, is difficult. 
ML models based on gene expression data derived from 
multiple different RNA-seq datasets have been used 
to cluster and classify patients with SLE195. PLS-DA, a 
supervised clustering algorithm, was applied to sam-
ples from four combined studies and the resulting 
model separated most patients with SLE from controls. 
The PLS-DA approach provided discriminatory genes 
with the potential to separate patients with SLE from 
controls195,196, but also suggested heterogeneity among 
patients with SLE. Consequently, patients with SLE 
were clustered using k-means clustering, in which k = 4 
clusters were specified based on statistical evaluation 
of the appropriate number of clusters. Unsupervised 
clustering identified patterns in gene expression among 
patients, and further analysis of clusters revealed that 
each had specific enrichment for disease features or dis-
ease activity195. An SVM approach was also employed to 
classify patients into the four clusters (which were used 
as labels) derived from k-means clustering21,195. When 
the SVM model was trained on one dataset and tested 
on a combination of other datasets, the model showed 
88% accuracy. A cross-validated RF classifier built with 
141 patients with SLE from combined datasets was also 
able to classify the patients with 88% accuracy.

Numerous studies have employed clustering to probe 
gene expression data. k-means clustering of gene expres-
sion modules and soluble mediator measurements was 
employed on another SLE dataset197. Seven clusters 
were identified based on differences in interferon, lym-
phocyte and monocyte gene modules. Demographics 
were variable in the clusters defined by gene or protein 
expression. In another study, 143 patients with SLE were 
grouped into four clusters based on lymphocyte gene 
expression, and then the clinical features of patients in 
each cluster were examined198. Some clusters were char-
acterized by higher incidence of tissue or organ mani-
festations such as nephritis or arthritis, whereas others 
had lower disease activity. Another clustering study used 
clinical and biological features to cluster patients with 
anti-Ku-antibody-positive myositis hierarchically into 
three clusters199, although the approach was met with 
criticism about whether the outcomes were biologically 
meaningful200. The critical review claimed that there is 
no optimal solution to ML problems aimed at determin-
ing the number of clusters within a dataset200, which may 
suggest that simple clustering methods are not ideal for 
forming clinically meaningful patient subsets. Thereby, 
although there is utility in clustering, it is important to 
ensure that the assumptions and criteria of the analytical 
choice are met.

Compared with less complex clustering approaches 
such as k-means clustering or PCA, artificial neural 
networks have proved to be a useful tool in identifying 
disease subsets. PCA was compared with an artificial 
neural network-based model in classifying populations 
of patients with pSS and determining the most impor-
tant variables for predicting lymphoma development in 

patients with pSS201. The artificial neural network-based 
model could classify patients with pSS into two groups 
based on whether their glandular manifestations were 
severe or mild. In addition, after feature selection was 
used to determine the 15 variables most associated with 
lymphoma development, the artificial neural network 
was applied to predict whether patients would develop 
lymphoma. The proof-of-concept model built using 
these variables demonstrated a sensitivity and specificity 
of 92.5% and 98% respectively, although validation in an 
external dataset is still needed.

Lessons from machine learning use in 
rheumatology
When appropriately employed, ML is an effective and 
efficient technique for analysing high-dimensional data. 
ML is powerful, as it can recognize patterns in data that 
are not easily detected by humans. In addition, the con-
sistent following of algorithm-determined rules and 
optimization schema in ML can reduce variability in 
classification or regression, which may be important for 
clinical standardization. Moreover, ML has been used to 
integrate multiple types of data for outcome prediction. 
In RAIDs, ML has been employed to classify patients in 
EHRs, classify disease activity based on imaging, detect 
differences in gene expression in active and inactive dis-
ease, and predict drug repurposing candidates. However, 
there are few prospective studies that have been designed 
to generate data appropriate for ML analysis and subse-
quently employ this analytical technique. Most ML stud-
ies to date have been retrospective, as they have used 
existing datasets, many of which are not sufficiently large 
or robust. Consequently, these studies are not suitable to 
fully appreciate the translational capacity or properly test 
the utility of ML. For example, the measured data may 
not be suitable for input into one or many classifiers. The 
application of ML to available data instead of de novo 
experimental design might in itself be considered a 
weakness of this approach at present. Nevertheless, pro-
spective studies still prove beneficial, as they can be used 
to generate hypotheses about patient cohorts, which may 
be tested in new studies that are designed with appropri-
ate data collection and sample stratification to achieve a 
particular goal.

Limitations of machine learning
Despite its advantages, ML can still prove challenging 
(BOx 1). With the availability of numerous ML algorithms, 
it is often difficult to determine the most appropriate 
algorithm a priori. As discussed here, different algo-
rithms have been implemented by different investigators 
to achieve the same goal (for example, classify patients 
using EHRs or classify patients’ disease activity status). 
Often, some algorithms may be unfeasible because of 
the size of the dataset. In addition, algorithm choice 
might be limited by the characteristics of available data, 
and the most appropriate model might not be apparent 
without comparison of several models. The most thor-
ough solutions compare multiple models or combina-
tions of models that could solve the problem. Moreover, 
the optimal model for the specified problem might  
require implementation of multiple ML models in 
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series (that is, one ML model for preprocessing and 
one for classification). As such, many studies employ-
ing ML evaluate numerous models built with different 
algorithms and ultimately choose the model yielding 
the greatest accuracy, as determined by sensitivity, 
specificity or other metrics at the end of the analysis. 
Nevertheless, general guidelines exist for selecting the 
most appropriate model based on the desired outcome 
and type of data.

Because ML can be thought of as a ‘black box’, it can 
be difficult to assess the quality of the model imple-
mentation and the validity of the results. Throughout 
this Review, we have enumerated the importance of 
the careful preprocessing of data, comparing multiple 
algorithms to find the one that is most appropriate for 
the dataset being analysed, and subsequently validating 
the algorithm using cross-validation and, most cru-
cially, with an independent dataset. If these practices are 
employed, then one can be confident of the outcome, 
even if the accuracy or predictive power of the resulting 
model is less than optimal. A helpful framework for the 
assessment of model quality has been published, which 
provides key questions for assessing the employment 
of preprocessing, cross-validation, sample size, evalu-
ation, hyperparameters and ensembling in ML model 
construction202.

In addition, the predictive power of a model is 
dependent on the quality of the input data21, which can be 
affected by data collection methods. Although validation 
systems can help to detect anomalies in the data, mitigat-
ing errors is difficult203. As a result, even strong models 
built on a single training and validation dataset can fail in 
additional datasets. Furthermore, a supervised model is 
only as accurate as its original labels. Improper labelling 
of patients as having ‘RA’ or ‘SLE’ in the training dataset 

for a model that intends to classify whether a new patient 
has one disease and not the other could lead to improper 
classification of new samples204. Moreover, classification 
of a patient may be based upon the current knowledge 
in the field, and the model may recognize additional cri-
teria to subdivide individuals who may be dismissed as 
inaccurate. As with any kind of model, ML models are 
subject to differing degrees of accuracy. Overfit models 
are often characterized as having high variance, which 
means that they capture the variability of the data points 
on which the model was built and incorporate these 
variations into the resulting model structure89. Overfit 
models capture too much of the noise that is present in 
the data from which they were built205 and can therefore 
fail when applied to new datasets, especially when the 
model encounters new data that are sufficiently different 
from the data used to build the model. Underfit models 
are often oversimplified because they make simplifying 
assumptions about the model’s underlying mathemat-
ical function6,89. As a result, underfit models could fail 
to capture underlying trends of the data, making them 
biased. Errors related to model fit can be reduced, but 
usually at a cost, a phenomenon known as the bias– 
variance tradeoff206. The best ML algorithms balance bias 
and variance for implementation of a strong predictive 
model. There is power in the ability of ML to predict 
information or draw conclusions without the general 
deductive reasoning paradigm, but because of the issue 
of fitting, caution with ML outcome interpretation is also 
necessary.

Finally, there is a tradeoff between model interpret-
ability and model performance. Interpretability refers 
to the ability to derive biological meaning from the 
outcome and/or understand the mathematical mecha-
nisms driving the algorithm207,208, whereas performance 
is generally assessed by model accuracy. Neural networks 
are often cited as the most accurate models, but often 
they are difficult to implement and interpret because of 
their complex rules and ‘hidden layers’. Similarly, SVM 
models are known to be difficult to interpret33. Decision 
trees are often cited as useful tools because they balance 
the accuracy–interpretability trade-off well, but they can 
be improved by ensemble methods209. Even if the out-
come of a model can be understood biologically, it still 
might not be ‘explainable’, meaning that the user does 
not understand the mathematical relationship between 
inputs and outputs207,210. As such, an entire field termed 
‘explainable artificial intelligence’ has emerged207, and 
guidelines for the transparency of clinical trials employ-
ing ML-based analysis have been established211. However, 
the most challenging aspect of ML application in practice 
is validation. ML models are prone to overfitting, and 
thereby application of the model to a new dataset might 
produce an entirely different result. In addition, when 
applied to biomedicine, ML models may extract relation-
ships with no known biological meaning, so it is impor-
tant to determine whether the ML model might have 
uncovered biological function that cannot be deducible 
from a reductionist approach or has uncovered patterns 
of noise in the data.

Sample size can also affect model accuracy and inter-
pretability. Although there are no definitive cut-off limits 

Box 1 | Limitations of machine learning

Algorithm selection is not straightforward
•	There is no consensus on algorithm selection for specific applications.

•	The most appropriate machine learning algorithm for a dataset is dependent on the 
desired outcome, type of data (numerical versus categorical), number of samples and
number of input features.

Quality of the input data may be poor
•	The predictive power of a model is dependent on the quality of the input data21, 

but available data could be of poor quality or variable between data sources.

•	It is difficult to mitigate errors and detect anomalies in data203.

Accuracy of class labels
•	class labels are dependent on expert definition and improper labelling of data could

lead to improper classification of new samples204.

•	class labels might be dependent on current knowledge in the field and models could
recognize additional criteria to subdivide individuals who might be dismissed as 
inaccurate.

Model fit and interpretation
•	Some models could overfit the training data and then fail on new datasets.

•	other models might fail to capture underlying trends of the data.

•	There is a trade-off between overfitting and underfitting the data (the bias–variance 
trade-off206) and between the performance of the model and the ability to understand it.

•	ml models that are not validated with external datasets or built from small sample
sizes must be interpreted with caution.
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for sample size, the general understanding is that more 
samples allow for a more robust analysis. Unlike other 
statistical strategies, power analyses are not routinely 
employed in the design of ML models, as the expected 
outcome and effect size might be unknown. Although 
many studies discussed here demonstrate modest to 
good accuracy in classifying patients or predicting 
outcomes, further validation in larger cohorts is neces-
sary before the conclusions can be employed in clinical 
practice.

Altogether, ML is becoming increasingly powerful, 
but much remains to be tested and discovered. First and 

foremost, there is a need for larger initial training data-
sets so that the original data have more variability and 
available validation and testing datasets so that models 
can also be evaluated under independent conditions. In 
addition, improved understanding of model parameters 
and equations is necessary to determine whether or not 
a result is biologically meaningful. Ultimately, however, 
the success of a ML approach will be gauged by its abil-
ity to improve clinical care and provide more effective 
personalized management.

Conclusions
The availability of data, including patient history data 
(EHR data), gene expression data (which in the future 
may be derived from an at-home clinical test), wearable 
diagnostic data (for example, from step trackers) and 
genetic susceptibility data, might lead to a transforma-
tion in rheumatology care by implementation of rapid, 
effective precision medicine212. Indeed, wearable diag-
nostics were discussed earlier145 and are already being 
employed in a clinical trial for both SLE and RA as a 
means of both tracking activity and helping to reduce 
inactivity (NCT02554474). In addition, a mobile app 
has been developed to track patient-reported outcomes 
in SLE on a daily basis (NCT03142711). Moreover, 
another clinical trial (NCT04306939) is collecting 
observational data for RA and other diseases to be ana-
lysed with ML in order to develop disease models that 
define risk factors. The application of ML to the analysis 
of these and other data is beginning to change the land-
scape of RAIDs research213. The studies explored here 
illuminate many advances in improving understanding 
of individual patients’ disease using ML and, thereby, 
the knowledge gained might assist with future efforts in 
personalized medicine. ML-enabled diagnoses or flare 
prediction might help to prevent organ damage or aid in 
the management of disease chronicity. Patient classifi-
cation and subtyping of gene expression with ML might 
give an insight into the most appropriate treatment for 
each patient. Furthermore, examination of a patient’s 
genetic data by ML could help to classify patients on 
the basis of disease risk and ML analysis of EHR data 
could improve identification of patients with RAIDs 
(BOx 2). This progress, coupled with the prevalence of 
ML use by healthcare systems, demonstrate the rapid 
expansion and implementation of these techniques. 
Together, these advances reveal the current momen-
tum in improving patient identification, treatment and 
personalized medicine with the application of ML when 
used appropriately.

Published online 2 November 2021

Box 2 | Using machine learning to improve clinical decision­making and 
rheumatology research

Electronic health record data analysis
machine learning (ml) models built using electronic health record data might be able to 
relate the features of one patient to thousands of other patients at the same medical 
practice. This ability could enable prediction of future disease progression, drug 
utilization, comorbidities or additional patient medical needs. Another ml model using 
electronic health record data could be used to recognize patterns of organ involvement, 
laboratory test ordering or medication use that actually suggests a diagnosis before one 
can be made based on clinical presentation and/or specimen collection by a health-care 
professional. A third model might be used for exploratory analysis; that is, to find patterns 
in the data that could be used as a reference and later validated.

Imaging analysis
using ml, it might be possible to standardize the examination and diagnosis of clinical 
features from images across multiple institutions. In addition, ml might be able to 
identify patterns in images that are undetectable to the human eye, which could be 
used to generate hypotheses or new knowledge about the features of organ or tissue 
manifestations in rheumatic autoimmune inflammatory diseases.

Biomarker analysis
If potential biomarkers were used as input features for ml-based classification of 
known groups, analysis of which biomarkers correctly identified and separated the 
classes might lead to the identification of novel disease biomarkers. In addition, 
examination of the common features of ml-determined clusters could generate 
hypotheses about potential biomarkers.

Biometric analysis
The analysis of daily activity data (collected with wearable activity trackers) or other 
biometric data by ml might allow for the detection of patterns that could aid in  
the classification of patients with flares or onset of other rheumatic autoimmune 
inflammatory disease symptoms.

Transcriptomic analysis
ml-enabled analysis of transcriptomic data might allow for identification of new 
subtypes of patients with similar molecular disease features. These subtypes could then 
be correlated with known clinical variables and specific, personalized profiles of these 
patients could be developed; personalized therapy might be proposed because of their 
unique molecular profile.

Therapeutic analysis
ml has been employed to inform drug discovery and predict drug repurposing 
candidates. ml analysis could lend insight into patterns of therapeutic response and 
allow for prediction of patients who do or do not respond to a certain therapy.
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Our understanding of the coronavirus disease 2019 
(COVID-19) pandemic caused by the novel severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) 
has improved greatly since the first human cases were 
reported in December 2019 in Wuhan City, China1,2. 
COVID-19 is known to involve multiple organ sys-
tems, with the major disease burden resulting from res-
piratory, cardiovascular, thrombotic and neurological 
complications3–5. Cellular entry of SARS-CoV-2 depends 
on binding of the viral spike (S) protein to cellular recep-
tors such as angiotensin-converting enzyme 2 (ACE2) 
receptor, which is expressed in multiple organ systems6,7, 
and on S-protein priming by host-cell proteases8,9. In 
some individuals these steps are followed by a cascade 
of inflammatory events, resulting in a ‘cytokine storm’7. 
This massive pro-inflammatory cellular and cytokine 
response is a feature of patients with severe COVID-19 
disease10.

Although morbidity and mortality from primary 
COVID-19 infection have remained limited in children, 
we have witnessed the emergence of a new inflamma-
tory disorder associated with COVID-19, termed multi-
system inflammatory syndrome in children (MIS-C) in 

the USA and paediatric inflammatory multisystemic 
syndrome (PIMS) in Europe11–15. Current evidence 
suggests that MIS-C is a post-infectious, immuno-
logically mediated disorder related to prior SARS-CoV-2 
exposure or infection16–18. Epidemiological, clinical 
and immunological investigations have revealed that 
MIS-C has phenotypic similarities to Kawasaki disease,  
a childhood inflammatory vasculitis, and it has been  
suggested that SARS-CoV-2 acts as an additional infec-
tious trigger of Kawasaki disease, leading to an exag-
gerated phenotype along the same disease spectrum. 
However, in this Review we present evidence that 
although MIS-C has some features that overlap with 
Kawasaki disease, they are distinct syndromes that dif-
fer in degrees of hyperinflammation and dysregulated 
immune responses (Table 1).

Overview of Kawasaki disease
Kawasaki disease is a paediatric, self-limited, systemic 
inflammatory vasculitis that was first described in 1967 
in Japan by Dr Tomisaku Kawasaki19. The most impor-
tant long-term sequelae of Kawasaki disease relate to 
abnormalities of the coronary artery, and it is now the 
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a cytokine storm.
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most common cause of acquired heart disease in chil-
dren in the developed world20. A diagnostic feature of 
Kawasaki disease is fever that persists for more than  
5 days when untreated. Additional typical clinical 
features include polymorphic skin rash (erythema), 
involvement of lips and oral mucosa (lip fissures, 
strawberry tongue), lymphadenopathy (cervical, often 
unilateral), non-exudative bilateral conjunctivitis and 
extremity changes (erythema and oedema of palms  
and soles that desquamate after 2–3 weeks, usually seen 
in the subacute phase)20.

Aetiology
The aetiology of Kawasaki disease is uncertain, and 
there is no single specific diagnostic test. The general 
consensus, based on results from multiple studies, is 
that Kawasaki disease is an immune-mediated disease 
triggered by infection (or infections) in patients with 
a genetic predisposition21–25. Some epidemiological 
features offer clues to the pathogenesis of Kawasaki 
disease. It is typically noted in children between the 
ages of 6 months and 5 years, with an estimated inci-
dence of 25 cases per 100,000 children younger than  
5 years in North America20,26. It is believed that children 
younger than 6 months, who have immature immune 

systems, are protected by passive immunity provided 
by the transplacental transfer of maternal antibodies, 
whereas children older than 5 years have developed 
protective antibody responses to the ubiquitous antigens 
that most encounter uneventfully in early childhood27. 
There is a male predominance (~1.5:1) in the incidence 
of Kawasaki disease, a feature that is shared by many  
common childhood infectious diseases28,29.

Seasonal variation in the incidence of Kawasaki dis-
ease has been noted, with peak incidence occurring in 
winter and spring in the USA and UK, and in summer 
in China and Korea30–34. Seasonal variation is least evi-
dent in Japan, the country with the highest incidence 
of Kawasaki disease35,36. Geographical variation and 
clustering in the incidence of Kawasaki disease also 
occurs, with the highest incidence reported in Japan, 
China, South Korea and Taiwan35,37–39. These epidemi-
ological features point towards a transmissible infec-
tious agent, which tends to occur in certain regions 
of the world with a seasonal variation in its incidence. 
Evidence exists for the presence of concurrent infections 
(with bacteria or common respiratory viruses, includ-
ing coronaviruses) in patients with Kawasaki disease40–42. 
Immunohistochemistry analyses have shown infiltra-
tion of IgA plasma cells indicative of the antigen-driven 
immune response in inflamed tissues and the presence 
of cytoplasmic antigens suggestive of an infectious aeti-
ology in bronchial and vascular endothelial cells and 
macrophages43. However, to date no single organism 
has been directly proved to cause Kawasaki disease44,45.

Involvement of superantigens
The potential pathogenic role of superantigens has been 
evaluated, on the basis of observations of preferential 
expression of T cell receptor (TCR) β genes encod-
ing variable regions Vβ2 and Vβ8.1 in the peripheral 
blood lymphocytes of patients with acute Kawasaki 
disease46–48. Superantigen activity has been identified in 
the gut microbiota of such patients, and culture super-
natants of these bacteria contain a heat shock protein 
(Hsp60, also known as GroEL) that induces T cell divi-
sion and production of pro‐inflammatory cytokines49. 
However, in studies using flow cytometry in large series 
of patients with Kawasaki disease, TCR skewing and 
over-presentation of the described TCR clones has not 
been found, and it is currently believed that Kawasaki 
disease is a result of T cell activation by a conventional 
antigen50,51.

Involvement of nutritional disorders
The role of nutritional disorders, including vita-
min D deficiency, in the pathogenesis of Kawasaki 
disease is subject to debate52. Vitamin D has an 
anti-inflammatory effect mediated through elevation 
of expression of IL-10 and inhibition of expression of 
vascular endothelial growth factor53,54. Results from a 
German population-based study showed that vitamin D  
supplementation has a protective effect against the 
development of Kawasaki disease55. Low serum con-
centrations of vitamin D might contribute to the devel-
opment of coronary artery complications in children 
with Kawasaki disease56. However, other results have 

Key points

•	multisystem inflammatory syndrome in children (mIS-c) is characterized by 
exaggerated innate and adaptive immune responses following infection with severe
acute respiratory syndrome coronavirus 2 (SArS-cov-2) in predisposed children.

•	clinical presentation of mIS-c involves multiple organ systems, with prominent
involvement of the gastrointestinal and cardiovascular systems.

•	The factors that trigger the development of mIS-c in children exposed to or infected
with SArS-cov-2 are not yet known.

•	results from epidemiological, clinical and immunological investigations have 
revealed that although mIS-c has phenotypic similarities to Kawasaki disease, they
are different syndromes.

•	The approach to treatment of mIS-c aims to mute the augmented inflammatory
response.
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identified elevation of vitamin D levels during the acute 
phase of Kawasaki disease in children who subsequently 
developed coronary arterial lesions57. The contribution 
of other nutritional factors has also been suggested. For 
example, iron-deficiency anaemia is associated with 
development of coronary abnormalities in Kawasaki 
disease58. These varied results suggest the need for fur-
ther investigation and research to elucidate the role of 
malnutrition in the pathogenesis of Kawasaki disease.

The role of microbiota
Disturbances in the normal microbiota (dysbiosis) 
have been proposed to have a role in the pathogen-
esis of various autoimmune and inflammatory dis-
orders, including Kawasaki disease59–61. Stools from 
children with Kawasaki disease contain higher num-
bers of Gram-positive bacteria from the Streptococcus, 
Staphylococcus, Eubacterium and Peptostreptococcus gen-
era, as well as Hsp60-producing Gram-negative bacteria, 
and lower numbers of lactobacilli than stools from chil-
dren with other febrile illnesses or healthy controls49,61,62. 

Dysbiosis is associated with reduction in the production 
of short-chain fatty acids (particularly butyrate) and is 
proposed to lead to aberrant immune responses that are 
associated with Kawasaki disease63.

Genetic susceptibility
Epidemiological and genetic studies of Kawasaki dis-
ease have shed light on the role of genetic susceptibility 
in its development64. Kawasaki disease is prevalent in 
Japan, but also in children of Japanese ancestry living 
in Hawaii65. Siblings of children with Kawasaki dis-
ease have a 10-fold higher risk of development of the 
condition than children in the general population66. 
Several candidate genes have been identified through 
genome-wide association studies and linkage studies. 
The four major groups of genes that have been studied 
in Kawasaki disease are those associated with T cell acti-
vation (ORAI1 and STIM1), B cell signalling (CD40, BLK 
and FCGR2A), apoptosis (CASP3) and transforming 
growth factor-β (TGFβ) signalling (TGFB2, TGFBR2, 
MMP and SMAD)64. CASP3 encodes caspase 3, which 
is an effector caspase with a vital role in the execution 
phase of apoptosis. A single-nucleotide polymorphism 
in the CASP3 gene is associated with susceptibility to 
Kawasaki disease67. TGFβ is another vital protein with 
a central role in immunoregulation that affects multi-
ple populations of leukocytes. Abnormalities in TGFβ 
signalling resulting from genetic variation are involved 
in Kawasaki disease susceptibility and outcomes68. 
Understanding the roles of these genetic alterations has 
implications for potential therapeutic approaches69. In 
addition to these groups, mutations in ITPKC, which is 
involved in Ca2+ mobilization and activation of NLRP3 
inflammasomes, could result in enhancement of IL-1β 
and IL-18 production, disease susceptibility, coronary 
abnormalities and resistance to treatment with intrave-
nous immunoglobulin (IVIG)70,71. Notably, immuno-
suppressive agents such as ciclosporin, a T cell inhibitor 
that blocks the calcineurin–NFAT pathway, have shown 
promise in the treatment of high-risk IVIG-resistant 
Kawasaki disease72. The observed association of HLA 
polymorphisms with Kawasaki disease varies; the pre-
dominant variant in a Japanese cohort was HLA-Bw54, 
whereas HLA-Bw51 was predominantly identified in 
white and Jewish populations73–75. Epigenetic regula-
tion of inflammatory and immunoregulatory genes by 
factors such as methylation, microRNAs and long non-
coding RNAs has been identified in Kawasaki disease, 
and might be relevant to pathogenesis and prognosis76. 
Additionally, single-nucleotide polymorphisms in 
cytokine genes, including IL1, KCNN2, TIFAB, P2RY12 
and TNF, are associated with Kawasaki disease and with 
risk of coronary artery lesions, as well as IVIG treatment 
failure77–82.

Immunological aberrations
Innate and adaptive immune responses both have impor-
tant roles in the development of Kawasaki disease83. An 
intense initial response driven by the innate immune 
system takes the form of neutrophilic leukocytosis, 
activation of monocytes, natural killer (NK) cells and 
γδ T cells, and elevation of production of acute-phase 

Table 1 | Comparison of Kawasaki disease and MIS-C

Comparison Kawasaki disease MIS-C

Demographics

Age 6 months to 5 years 6–11 years

Sex Male predominance (~1.5:1) No apparent predominance

Race or 
ethnicity

Highest incidence in Japan, China, 
South Korea and Taiwan

Highest incidence in children of 
African and Hispanic heritage

Pathogenesis

Trigger Unknown but some data suggest 
possible preceding viral or 
bacterial infection

Onset ~3–6 weeks after 
SARS-CoV-2 exposure

Immunological characteristics

Similarities Enhancement of IL-1β+ neutrophils and immature neutrophils

Differences T cell activation by a conventional 
antigen

SARS-CoV-2 viral spike (S) 
protein acts like a superantigen, 
triggering a cytokine storm

High levels of IL-17 High levels of IL-15, IFNγ in 
severe cases

Relatively less frequent MAS-like 
cytokine profile

>50% of patients with MIS-C 
have a MAS-like cytokine 
phenotype

Lymphopenia is rare Lymphopenia

Anti-SARS-CoV-2 IgG not reported Anti-SARS-CoV-2 IgG

Clinical features

Similarities Similar associations with fever, rash, cervical lymphadenopathy, 
neurological symptoms, extremity changes

Differences Relatively high incidence of 
conjunctival injection and oral 
mucous membrane changes

Relatively high incidence of 
gastrointestinal symptoms, 
myocarditis and shock, and 
coagulopathy

Management

Common IVIG, glucocorticoids, 
acetylsalicylic acid

IVIG, glucocorticoids, 
acetylsalicylic acid

Rare Infliximab, ciclosporin and anakinra Anakinra, tocilizumab

IVIG, intravenous immunoglobulin; MAS, macrophage activation syndrome; MIS-C; 
multisystem inflammatory syndrome in children; SARS-CoV-2, severe acute respiratory 
syndrome coronavirus 2.
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reactants and cytokines, especially IL-1β, which contrib-
utes to activation of endothelial cells, inducing upregu-
lation of expression of cell-adhesion molecules, IL6 and 
IL8 (refs76–88). Pro-inflammatory IL-17 produced by type 
17 T helper (TH17) cells could activate immune cells such 
as neutrophils and monocytes, leading to production of 
other inflammatory cytokines, such as IL-6, TNF and 
IL-8, thereby contributing to the pathogenesis of many 
inflammatory disorders89–92. By contrast, CD4+CD25+ 
regulatory T (Treg) cells contribute to immune tolerance 
through suppression of the hyperactivation of both 
innate and adaptive immune cells, via several mutually 
nonexclusive mechanisms. An imbalance in these path-
ways could lead to immune dysregulation, which could 
have a role in the pathogenesis of Kawasaki disease93–96.

Neutrophils are activated in Kawasaki disease and 
release reactive oxygen species, leading to endothe-
lial cell injury83. Release of neutrophil extracellular 
traps (NETs) is also implicated in the pathogenesis of 
Kawasaki disease97. Although NETs have a protective 
role against infections as components of the innate 
immune system, they also have pathogenic potential  
for immune dysregulation and promotion of inflamma-
tion and tissue injury98. NETs have been implicated in 
the development and progression of rheumatic diseases, 
including systemic lupus erythematosus, rheumatoid 
arthritis and autoimmune vasculitis99–101. Yoshida et al.97 
demonstrated elevation of NET formation in the sera 
of patients with Kawasaki disease, as well as neutrophil 
infiltration in the lesions of vasculitis in the coronary 
arteries and aorta in a mouse model of Kawasaki disease.

Autoimmune antibodies are thought to have a role in 
the pathogenesis of Kawasaki disease, particularly those 
against endothelial cell antigens102,103. Anti-endothelial 
cell antibodies could cause endothelial damage, with 
release of pro-inflammatory cytokines and a hypercoag-
ulable state leading to vessel-wall injury and intravascular 
thrombosis104. However, not all results have demon-
strated elevation of anti-endothelial cell antibodies  
in patients with Kawasaki disease105.

Immune complexes might have a role in the devel-
opment of Kawasaki disease106. They appear in the first  
7 days of the disease and peak in the second week before 
declining107. Elevation of circulating levels of immune 
complexes in Kawasaki disease is related to adverse 
outcomes such as coronary artery abnormalities108,109. 
However, a causal relationship between immune com-
plexes and the pathogenesis of Kawasaki disease has not 
been definitively established. Activation of the comple-
ment system has also been implicated in the pathogen-
esis of Kawasaki disease, via both the classical and the 
mannose-binding lectin pathways110,111.

Kawasaki disease is considered by some to be a form 
of IgA vasculitis. In children with Kawasaki disease, 
intestinal permeability and levels of secretory IgA in 
the circulation are greater than in unaffected children, 
and in mouse models of the disease, elevation of lev-
els of circulating secretory IgA and IgA deposition in 
the vasculature are observed112,113. Furthermore, phar-
macological blockade of zonulin (a modulator of intes-
tinal tight junctions) and administration of IVIG in 
these mouse models reduce intestinal permeability and 

cardiovascular inflammation compared with levels in 
untreated controls114.

Therapeutic strategies
IVIG and acetylsalicylic acid have emerged as first-line 
therapies for the management of Kawasaki disease20. 
IVIG therapy leads to rapid improvement in the clinical 
symptoms of rash, fever and conjunctival injection in 
most patients. Although the exact mechanism of action 
of IVIG is not yet known, proposals include inhibition 
of activation of innate immune cells and inflammatory 
mediators, expansion of Treg cells and suppression of 
TH17 cells93,115–118. Evidence indicates that IVIG might 
target IL-1β+ neutrophils via caspase-independent 
pathways119. Single-cell RNA sequencing of peripheral 
blood mononuclear cells in acute Kawasaki disease 
before and after IVIG therapy has revealed that genes 
encoding inflammatory mediators (including TNF and 
IL1B) are highly expressed in monocytes in untreated 
disease, with reduction of expression following therapy, 
along with significant enhancement of the plasma-cell 
population and induction of oligoclonal expansion of 
T cell receptors and IgG and IgA B cell receptors120. 
Mining of transcriptomic data by Boolean analysis 
has identified that several metabolic pathways might 
contribute to IVIG resistance in Kawasaki disease121.  
In high-risk patients with acute Kawasaki disease and in  
those who do not respond to IVIG therapy, steroid treat-
ment can be considered, to prevent the occurrence of 
coronary artery abnormalities20. Additional therapeutic 
options for IVIG-resistant Kawasaki disease include 
infliximab (a monoclonal antibody to TNF), ciclosporin 
(a calcineurin inhibitor) and anakinra (an IL-1 receptor 
antagonist)20.

Overview of MIS-C
Since April 2020, many reports have documented a 
new hyperinflammatory syndrome in children11,12,122. 
In May 2020, the US Centers for Disease Control and 
Prevention (CDC) issued an alert identifying MIS-C 
as a critical illness in children that was associated with 
SARS‐CoV‐2 infection123. Since then, more than 4,000 
cases of MIS-C have been reported in the USA alone124. 
In 26 studies published in 2020 and 2021, document-
ing 1,136 cases of MIS-C (mostly occurring in the USA 
and Europe), the reported median ages of the affected 
children were 6–11 years, with no significant gender  
difference14,15,122,125–140 (Table 2).

Patients with MIS-C have symptoms that resemble 
those of other hyperinflammatory syndromes, such as 
Kawasaki disease, toxic-shock syndrome (TSS) and mac-
rophage activation syndrome (MAS), which is a type of 
secondary haemophagocytic lymphohistiocytosis11,12. To 
improve clarity and aid diagnosis, the CDC published 
a case definition, which includes age <21 years, fever, 
laboratory evidence of inflammation, hospital admis-
sion, multisystem (two or more) organ involvement 
(cardiac, renal, respiratory, haematological, gastrointes-
tinal, dermatological or neurological), either laboratory 
confirmation of SARS-CoV-2 infection (by PCR with 
reverse transcription (RT–PCR), serology or antigen 
test) or known COVID-19 exposure up to 4 weeks 
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before symptom onset, with no alternative plausible 
diagnosis123. The WHO and the UK Royal College of 
Paediatrics and Child Health (RCPCH) have also pub-
lished case definitions, which are largely similar to the 
CDC definition, except that the RCPCH does not require 
evidence of prior exposure to SARS-CoV-2 (refs141,142). 
Despite the broad case definitions, and the considerable 
overlap with primary COVID-19 and other common 

childhood febrile illnesses, patients with MIS-C have 
distinct clinical presentation and levels of biomarkers, 
which aids in differential diagnosis143–145.

Aetiology
Compared with adults, primary SARS-CoV-2 infection 
is relatively mild in children146. Evidence indicates that 
a temporal relationship exists between SARS-CoV-2 

Table 2 | Demographic features of MIS-C study populations

Study Cohort 
location

N Median age, years 
(range or IQR)

Male:female (%) Race or ethnicity Ref.

Dufort et al. USA 99 No median

Distribution: 0–5, 31%; 
6–12, 42%; 13–20, 26%

54:46 Black, 40%; white, 37%; Hispanic, 36%; other, 
18%; Asian, 5%

14

Cheung et al. USA 17 8 (1.8–16) 47:53 Ashkenazi Jewish, 35%; Black, 24%; Hispanic, 
24%; white non-Hispanic, 12%; Asian, 6%

15

Belhadjer et al. France, 
Switzerland

35 10 (2–16) 51:49 Not reported 122

Kaushik et al. USA 33 10 (IQR 6–13) 61:39 Hispanic, 45%; Black, 38%; white, 9%; Asian, 
3%; other, 3%

125

Davies et al. UK 78 11 (IQR 8–14) 67:33 Afro-Caribbean, 47%; Asian, 28%; white, 22%; 
other, 3%

126

Pouletty et al. France 16 10 (IQR 4.7–12.5) 50:50 Not reported 127

Toubiana et al. France 21 7.9 (3.7–16.6) 43:57 Sub-Saharan African/Caribbean parentage, 
57%; European parentage, 29%; Asian 
parentage, 10%; Middle Eastern parentage, 5%

128

Capone et al. USA 33 8.6 (IQR 4.4–12.6) 61:39 Other, 45%; Black, 24%; Asian, 9%; white, 9%; 
unknown, 12%

(Hispanic, 27%; non-Hispanic, 73%)

129

Hameed et al. UK 35 11 (IQR 6–14) 77:23 Not reported 130

Whittaker et al. UK 58 9 (IQR 5.7–14) 56:44 Black, 38%; Asian, 31%; white, 21%; other, 10% 131

Moraleda et al. Spain 31 7.6 (IQR 4.5–11.5) 58:42 Not reported 132

Dhanalakshmi et al. India 19 6 (1.1–16.9) 42:58 Not reported 133

Miller et al. USA 44 7.3 (0.7–20) 45:55 Hispanic, 34%; not reported, 25%; white, 
20.5%; Black, 20.5%

134

Belot et al. France 108 8 (IQR 5–11) 49:51 Not reported 135

Lee et al. USA 28 9 (0.1–17) 57:43 Hispanic, 43%; white, 36%; Black, 18%; not 
reported, 3%

136

Riollano-Cruz et al. USA 15 No median

Mean 12 (3–20)

73:27 Hispanic, 66%; non-Hispanic African American, 
13%; non-Hispanic white, 13%; other, 8%

137

Ramcharan et al. UK 15 8.8 (IQR 6.4–11.2) 73:27 African or Afro-Caribbean, 40%; South Asian, 
40%; mixed, 13%; other, 7%

138

Grimaud et al. France 20 10 (2–16) 50:50 Not reported 139

Perez-Toledo et al. UK 8 9 (7–14) 63:37 Not reported 140

Jonat et al. USA 54 7 (0.7–20) 46:54 White, 35%; unknown, 31%; other, 19%; 
African American, 15%

205

Feldstein et al. USA 186 8.3 (IQR 3.3–12.5) 65:35 Hispanic, 31%; Black, 25%; unknown, 22%; 
white, 19%; other, 5%

13

Toubiana et al. France 23 8.2 52:48 Not reported 236

García-Salido et al. Spain 61 9.4 (IQR 5.5–11.8) 66:34 Not reported 145

Shobhavat et al. India 21 7 (IQR 1.9–12.1) 47:53 Not reported 261

Niño-Taravilla et al. Chile 26 6.5 (IQR 2–10.5) 58:42 Chilean, 73%; Venezuelan, 12%; Peruvian, 8%; 
Colombian, 4%; Haitian, 4%

262

Tolunay et al. Turkey 52 9 (IQR 5–13) 38:62 Turkish, 86%; Syrian, 14% 263

IQR, interquartile range; MIS-C, multisystem inflammatory syndrome in children.
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exposure and development of MIS-C, as a spike in MIS-C 
cases occurs 3–6 weeks after the peak of SARS-CoV-2 
transmission in a community13,129,147 (fig. 1). Median 
intervals of 21 and 25 days have been observed between 
the occurrence of COVID-19 symptoms and the onset 
of MIS-C13,14. Although 80–90% of patients with MIS-C 
have been found to be SARS-CoV-2 seropositive, pos-
itivity in PCR testing is only 20–40%, suggesting that 
the interval to the onset of MIS-C is sufficient for viral 
RNA levels to fall considerably148,149. Furthermore, naso-
pharyngeal aspirates from patients with MIS-C have 
higher SARS-CoV-2 real-time RT–PCR cycle thresh-
olds (indicating lower levels of viral RNA) than those 
from patients with severe COVID-19 (ref.150). However, 
autopsy examinations for three individuals who had 
MIS-C identified SARS-CoV-2 in various tissues, includ-
ing heart, kidneys, brain and intestine, which is consist-
ent with multisystem organ involvement in MIS-C151. 
Notably, the prolonged presence of SARS-CoV-2 in chil-
dren’s intestines might cause zonulin-dependent loss of 
tight junctions, leading to leakage of viral antigens into 
the circulation, and to hyperinflammation and MIS-C152. 
By contrast, single-cell RNA sequencing of peripheral 
blood mononuclear cells from patients with acute MIS-C 
have revealed low viral and bacterial signatures in the 
immune cells, suggesting that active viral or bacterial 
infectious triggers are not contributing factors153. The 
accumulated evidence suggests that MIS-C might be 
the result of a combination of post-infectious immune 
dysregulation and virus-induced cytopathic effects and 
inflammation in multiple organ systems.

Paediatric patients with COVID-19 or MIS-C 
have strong IgG, but weak IgM antibody responses 
to the trimeric S glycoprotein of SARS-CoV-2, and 
weak responses to the nucleocapsid protein N, which 
is implicated in viral replication140,154–158. By contrast, 
adult COVID-19 patients have higher levels of anti-S 
antibodies, broader immunoglobulin response to 

SARS-CoV-2 with respect to specificity and isotype 
distribution (including IgG, IgM and IgA isotypes) 
and higher virus-neutralizing capacity140,155,156,158. The 
mild or asymptomatic nature of COVID-19 in children 
might be related to the extent of the antibody response. 
Nevertheless, IgG antibodies to S protein provide an 
important diagnostic criterion for MIS-C. Low IgM 
titres in MIS-C are consistent with its appearance several 
weeks after SARS-CoV-2 exposure.

Analyses from geographically diverse cohorts have 
demonstrated that 20–50% of people with no previ-
ous exposure to the virus have T cell reactivity against 
peptides corresponding to SARS-CoV-2 sequences159, 
which might be related to CD4+ T cell cross-reactivity 
with circulating seasonal human ‘common cold’ coro-
navirus (HCoV)160. Although this phenomenon has 
implications for the development of herd-immunity 
models and vaccine candidates, it is currently unclear 
whether the presence of prior cross-reactive CD4+ T cells 
is protective or harmful in the pathogenesis of MIS-C. 
When tested for serological evidence of prior seasonal 
coronavirus infection, children with MIS-C and those 
hospitalized for non-COVID reasons had similar prev-
alence and levels of antibodies to HCoV161. Additionally, 
HCoV antibody levels did not correlate with the levels 
of SARS-CoV-2 antibodies, suggesting that prior HCoV 
infection neither provides protection nor worsens the 
course of paediatric SARS-CoV-2 infection or MIS-C.

SARS-CoV-2 S protein as a superantigen
SARS-CoV-2 viral S protein might behave like a supe-
rantigen, triggering a cytokine storm that results in the 
development of the TSS-like presentation of MIS-C162 
(fig. 2). The S protein has a high-affinity motif for binding 
TCR, which is similar in structure to the staphylococ-
cal enterotoxin B, a superantigen that mediates TSS by 
interacting with both TCR and MHC class II molecules. 
Computational modelling has shown that SARS-CoV-2 
encodes a superantigen motif near the S1/S2 cleavage site, 
which interacts with both the TCR and CD28 (ref.163). 
TCR repertoire analysis of T cells in a small number of 
patients with MIS-C has identified skewing of TCR Vβ 
towards TRBV11-2 (Vβ21.3), which is associated with 
HLA class I alleles A02, B35 and C04 (refs163,164). The 
CDR3-independent nature of TCR Vβ skewing suggested 
superantigen-mediated activation of T cells in MIS-C. 
Further evidence supports the enrichment of TRBV11-2 
among T cells153,165, although notably it has been observed 
in the absence of differential expression of a set of ‘super-
antigen genes’153. Also, MIS-C is usually observed several 
weeks after primary SARS-CoV-2 exposure, in contrast 
to the acute illness and cytokine storm observed in TSS166. 
In most cases, SARS-CoV-2 is undetectable in patients 
with MIS-C during the acute phase of inflammation. 
Thus, the superantigenic property of SARS-CoV-2 S pro-
tein and its implication in MIS-C is not yet confirmed. As 
an RNA virus, SARS-CoV-2 undergoes constant muta-
tion, and whether any particular variant of the virus 
contributes to MIS-C by triggering strong inflammatory 
signalling in the immune cells and endothelial cells of 
children with COVID-19 requires further exploration. 
Notably, the use of in silico techniques has demonstrated 

Pre-MIS-C phase (3–6 weeks)

• SARS-CoV-2 infection
• Mild COVID-19 symptoms
• IgM and IgG response
• Recovery from COVID-19 symptoms

MIS-C phase

Viral phase IgM IgG MIS-C

Fig. 1 | The temporal relationship between SARS-CoV-2 infection and development 
of MIS-C. Evidence suggests that a relationship exists between the timing of severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and development of 
multisystem inflammatory syndrome in children (MIS-C). Cases of MIS-C tend to be seen 
3–6 weeks after the peak of SARS-CoV-2 transmission in a community. Because of this 
time lag, MIS-C is associated with a strong anti-spike protein IgG response, but a weak 
IgM response. It should be noted that implication of SARS-CoV-2 as a triggering factor 
for the development of MIS-C has yet to be firmly established.
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that mutations in the binding region of SARS-CoV-2 S 
protein could influence the interaction with MHC class II  
molecules and TCR163.

Involvement of nutritional disorders
Nutritional factors such as vitamin D deficiency might 
have a role in the development of MIS-C. Adults with 
vitamin D deficiency were noted to have a more severe 
form of COVID-19 with an increased risk of death than 
those without this deficiency167. Vitamin D supplemen-
tation has proved to be of some benefit in infections with 
other viruses, such as influenza A168. Whether a similar 
benefit could accrue in MIS-C has not been elucidated.

The role of microbiota
Another contributing factor in the development of 
MIS-C that warrants investigation is the role of gut and 
respiratory tract microbiota. Gastrointestinal microbes 
are important regulators of the gut immune system and 
inflammation, and influence the balance between TH17 
cells and Treg cells169. Adult patients with COVID-19 
display alteration of gut and upper respiratory micro-
biomes, and gut dysbiosis persists beyond the nasal 
clearance of SARS-CoV-2 (refs170–173). Notably, faecal 
SARS-CoV-2 load is inversely correlated with the abun-
dance of bacteria of the Bacteroidetes phylum, which 
suppress ACE2 in the mouse gut173. Preliminary data 
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Fig. 2 | Possible mechanisms implicated in aberrant activation of immune cells in MIS-C. Clinical signs of multisystem 
inflammatory syndrome in children (MIS-C) mostly appear several weeks after severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) infection. MIS-C might be triggered by dysregulation of immune responses following viral 
infection. Aberrant activation of immune cells in patients with MIS-C could result from several factors. Infection with 
particular variants of SARS-CoV-2 might trigger hyperinflammatory responses. Genetic predisposition resulting from 
variants in the genes that encode pattern recognition receptors, Fcγ receptors and components of the signalling cascades 
of immune response, as well as mutations in genes such as SOCS1, which regulate inflammatory responses, could all 
contribute to enhancement of inflammatory responses to infection. Dysregulated activation of lymphocytes, with 
production of IgG corresponding to microbial pathogens or autoantigens, could cause immune-complex-mediated 
innate-cell activation by signalling via Fcγ receptors. Production of autoantibodies could also lead to complement 
activation and autoantibody-mediated endothelial damage. SARS-CoV-2 spike (S) protein might function as a 
superantigen, contributing to activation of T cells. SOCS1, suppressor of cytokine signalling 1; TLR, Toll-like receptor.
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from peer reviewed and non-peer reviewed reports 
also suggest the persistence of microbiome dysbiosis 
in the upper respiratory tract and the gut in paediatric 
COVID-19 (refs174,175).

Genetic susceptibility
The low incidence of MIS-C relative to COVID-19, and 
the similarity in antibody response to SARS-CoV-2 in 
paediatric patients with MIS-C and with COVID-19 
(irrespective of the subsequent development of MIS-C) 
suggest that SARS-CoV-2 infection causes dysregulation 
of immune responses in a subgroup of predisposed chil-
dren with particular genetic backgrounds176. Specifically, 
predisposition might be related to mutations and poly-
morphisms in the genes that encode pattern recognition 
molecules such as Toll-like receptors, components of the 
signalling cascades of the immune response and Fcγ recep-
tors (fig. 2). The incidence of MIS-C is higher in children 
of African and Hispanic heritage than in those of other 
ethnicities, although attribution of this finding to genetic 
differences is confounded by the contribution of socioec-
onomic factors to the risks of SARS-CoV-2 infection177–180. 
Among 145 HLA-A, HLA-B and HLA-C genotypes, 
HLA-B*46:01 was associated with in silico prediction of 
the fewest SARS-CoV-2-binding peptides (suggesting par-
ticular vulnerability to COVID-19), whereas HLA-B*15:03 
was predicted to have the greatest capacity for coronavirus 
peptide presentation (suggesting protective T cell-based 
immunity)181. Monogenic loss-of-function variants affect-
ing immunity in the type I interferon signalling path-
way might confer a predisposition to severe COVID-19 
manifestations182,183. In a study of two unrelated patients 
with infection-associated immune thrombocytopenia 
and autoimmune haemolytic anaemia, both had SOCS1 
haploinsufficiency and exhibited T cell activation and high 
levels of interferon signalling, and one developed MIS-C 
after SARS-CoV-2 infection. SOCS are negative regulators 
of interferon signalling, and silencing mutations might 
predispose the individuals to infection-associated hyper-
inflammatory states such as MIS-C184 (fig. 2). However, a 
clear genetic basis that explains why some children develop 
MIS-C after SARS-CoV-2 exposure is currently undeter-
mined. Additional factors, such as epigenetic effects at the 
level of histones, DNA or microRNA might also contribute 
to the development of MIS-C.

Immunological aberrations
In general, the signatures of immune cells and inflam-
matory parameters of MIS-C closely overlap with those 
of adults with moderate-to-severe COVID-19 rather 
than with paediatric COVID-19, which is mostly mild 
or asymptomatic. Also, immune activation in MIS-C is 
transient and tends to reduce during recovery154,185,186.

Pro-inflammatory mediators. Elevation of levels of 
pro-inflammatory cytokines such as IL-6, IL-10 and 
IL-17A, and chemokines such as CXCL5, CXCL11, 
CXCL1 and CXCL6 in MIS-C distinguishes it from pae-
diatric COVID-19 (refs136,153,154,187). In various cohorts, 
elevation of TNF, IL-1β, IFNγ, soluble IL-2R, CCL2, 
CCL3, CCL4, CXCL8 (IL-8) or IFNγ-induced chemo-
kines CXCL9 and CXCL10 has been reported in the 

serum of patients with MIS-C relative to those with 
paediatric COVID-19 or healthy controls136,150,153,165,186–189. 
Overall, enhancement of these pro-inflammatory 
molecules in the circulation indicates inflammatory 
responses of myeloid and lymphoid cells. Endothelial 
cells could also contribute innate inflammatory media-
tors, as E-selectin, a marker of inflamed endothelial cells, 
shows elevation in the serum of patients with MIS-C153. 
The reasons for the absence of some pro-inflammatory 
mediators in particular cohorts of patients are not 
known. The mediators that were analysed could have 
differed from study to study, but also, the levels of 
inflammatory mediators might vary depending on the 
patients’ genetic and epigenetic backgrounds, severity 
of the disease, geographical location and timing of the 
analyses. Results from a study of plasma proteomics in 
children with SARS-CoV-2 infection, which have not yet 
undergone peer review, suggest that IFNγ expression is 
heterogeneous among patients with MIS-C, and that 
patients have dysregulated response to IFNγ190. As the 
pandemic progresses, it will be important to have a con-
sensus regarding the panel of cytokines and chemokines 
that should be analysed in relation to MIS-C, to facili-
tate our understanding of the molecular pathogenesis 
and heterogeneity of this complex disease, and to enable 
accurate prognosis and effective treatment.

Immune-cell profiles. Immune-cell profiling of chil-
dren with MIS-C or primary COVID-19 infection 
reveals similarities as well as differences in their 
immune signatures185. They have similar proportions 
of eosinophils, immature granulocytes, monocytes and 
classic dendritic cells, but patients with MIS-C have 
elevation of neutrophils and reduction of plasmacy-
toid dendritic cells153,185,188, which might contribute to 
the low levels of IFNα that are observed in the blood 
of patients with MIS-C relative to those with paediatric 
COVID-19 (ref.188).

Neutrophils and monocytes are activated in patients 
with MIS-C186 and show upregulation of alarmin sig-
natures (in particular S100A genes) and reduction of 
expression of antigen-presenting, antigen-processing 
and co-stimulatory molecules153,165,186. Compared with 
healthy children, those with MIS-C have greater expres-
sion of cytotoxicity genes and CCL4 in NK cells, which 
might contribute to the occurrence of tissue damage153. 
Preliminary results suggest that plasma levels of IFNγ 
correlate with levels of NCR1 and IL-2RA, which 
are the soluble markers of activated NK and T cells, 
respectively190.

MIS-C could have a common pathophysiology with 
Kawasaki disease involving NET formation, which has 
been described in the sera of adults with COVID-19  
and with endothelial injuries or a prothrombotic 
state191–193. However, plasma levels of NETs and release 
of NETs from neutrophils are similar in children with 
mild or moderate COVID-19 or MIS-C and in healthy 
children194. Despite similarities between disorders asso-
ciated with pathogenic NETs and MIS-C, the role of 
NETosis in the pathogenesis of MIS-C remains uncer-
tain because of a lack of definitive evidence, and hence 
further studies are warranted.
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Both MIS-C and paediatric COVID-19 pres-
ent with general lymphopenia (affecting cells that 
include mucosa-associated invariant T  cells, γδ T 
lymphocytes and CD8+ T lymphocytes)136,150,154,185–188. 
Compared with paediatric COVID-19, in MIS-C there 
is more-pronounced CD4+ T cell-biased lymphopenia, 
which is similar to the situation in severely ill adults with 
COVID-19 (ref.185). However, results from single-cell 
RNA sequencing analysis have revealed enhanced prolif-
eration of CD4+ T cells in patients with MIS-C compared 
with healthy individuals153, suggesting that lymphopenia 
might be the result of homing of T cells to the inflamed 
tissues. Despite showing T cell lymphopenia, the relative 
distribution of various T cell subsets such as naive, cen-
tral memory and effector memory cells in patients with 
MIS-C is similar to that in age-matched healthy individ-
uals, indicating a pan-CD4+/CD8+ T cell lymphopenia, 
rather than a subset-specific effect154,185.

A distinct feature of MIS-C compared with paediat-
ric COVID-19 is the activation of CX3CR1+CD8+ T cells 
(CD8+ T cells that express vascular endothelium-homing 
CX3CR1, also known as fractalkine receptor), which could 
have implications for development of vascular abnormal-
ities and cardiovascular abnormalities185. This immuno-
logical phenotype is correlated with elevation of D-dimer, 
reduction of platelets and with the requirement for vasoac-
tive medication. Although not as prominent as in NK cells, 
CD8+ T cells in MIS-C also show increases in signatures 
of cytotoxicity compared with those in healthy children153. 
RNA sequencing in blood from children with MIS-C 
revealed aberrant NK and CD8+ T cell regulation, with 
depletion of NK cells and an absence of NK cell-dependent 
exhaustion of effector CD8+ T cells, which can lead to  
sustained inflammation195. Notably, the proportion of 
activated CX3CR1+CD8+ T cells in patients with MIS-C 
decreases as the clinical status improves185. Thus, there 
seems to be a sustained activation and dysregulation of 
CD8+ T cells, particularly those that express CX3CR1.

Nonspecific activation of B cell clones and expansion 
of plasmablasts occurs in MIS-C150,153,185,186. Plasmablast 
elevation also occurs in children with COVID-19 
(ref.185). However, the specificity of expanded B cells and 
plasmablasts might vary between the two conditions. 
Patients with MIS-C display pronounced autoreactivity 
signatures of plasma immunoglobulins compared with 
healthy children or adults and children with COVID-19 
(refs103,153,154). Also, patients with MIS-C have evidence of 
extrafollicular responses, as indicated by high frequen-
cies of plasmablasts expressing the T box transcription 
factor T-bet185. Future research should aim to uncover the  
reasons for this B cell activation, and should compare 
the characteristics of expanded B cells and plasmablasts, 
and the specificities of immunoglobulins, in MIS-C and 
paediatric COVID-19. As both conditions are associ-
ated with nonspecific B cell activation and elevation of 
plasmablast frequencies196, molecular mimicry between 
self-antigens and SARS-CoV-2 antigens (as described in 
a paper that has not yet been peer reviewed197) might not 
be entirely responsible for the appearance of autoreac-
tivity in MIS-C, and instead a combination of molec-
ular mimicry and dysfunctional immunoregulatory  
machinery could be involved.

Humoral features. Analysis of IgG by systems serology 
has identified that humoral features in patients with 
MIS-C, such as complement deposition and neutro-
phil phagocytosis, overlap with those in convalescent 
adults with COVID-19 (ref.158). However, patients with 
severe MIS-C have persistent levels of FcγR binding 
(and in particular activating FcγRIIA) and inflamma-
tory monocyte/macrophage-activating IgG158. Although 
hypergammaglobulinaemia is not observed in patients 
with MIS-C, a selective expansion of the IgG reper-
toire to react not only to SARS-CoV-2, but also to 
other bacterial and viral pathogens, some of which are 
implicated in the triggering of Kawasaki disease, has 
been observed. The underlying reason for the enrich-
ment of particular IgG specificities is not yet known, 
but many of the microbes have been identified in the 
respiratory tracts of patients with MIS-C198, suggest-
ing a role for an immune-complex-driven inflamma-
tory response in the pathogenesis of MIS-C. IgG and  
IgA autoantibodies occur in patients with MIS-C,  
and recognize gastrointestinal, mucosal, immune-cell and  
endothelial antigens153,154. Although the functionality 
of these autoantibodies and their roles in the patho-
genesis of MIS-C should be investigated, these results 
might explain at least in part the involvement of multiple 
organ systems in MIS-C and provide a pointer towards 
dysregulated activation of B lymphocytes, enhanced 
autoreactivity and immune-complex-mediated inflam-
matory responses (fig. 2). Enhanced expression of CD64 
(FcγR1), a high-affinity receptor for the Fc fragment of 
IgG, has been observed on neutrophils and monocytes 
of patients with MIS-C154,186. Furthermore, most of these 
patients respond to IVIG therapy11,15,122,129,131, which pro-
vides additional indirect support for the implication of 
FcγR-mediated activation of innate immune cells by 
immune complexes formed by these IgGs.

A role for the complement system in the pathogene-
sis of MIS-C has been suggested. Patients with MIS-C or 
paediatric COVID-19 have elevated plasma levels of sol-
uble C5b-9 compared with healthy controls150,199. Soluble 
C5b-9 is a biomarker to monitor the activity of the ter-
minal pathway of complement, and elevated levels sug-
gest complement activation and endothelial dysfunction. 
Notably, although patients with MIS-C and paediatric 
COVID-19 have similar levels of complement-activating 
IgG antibodies to S protein of SARS-CoV-2 (refs140,154–158), 
those with MIS-C have enhanced autoreactive signatures 
of IgG103,153,154. As patients with MIS-C typically have min-
imal or no SARS-CoV-2 at the time of development of the 
disease, enhanced autoreactivity and immune-complex 
formation might contribute to the elevated levels of C5b-9.  
Consistent with complement activation, MIS-C is asso-
ciated with clinical criteria for complement-mediated 
thrombotic microangiopathy, such as microangiopathic 
haemolytic anaemia, hypertension, thrombocytopenia, 
proteinuria and evidence of organ damage on the basis of 
lactate dehydrogenase elevation199. Compared with pae-
diatric COVID-19, patients with MIS-C have higher inci-
dence of thrombotic events200. Results from proteomics 
analyses of plasma samples, which have not yet been peer 
reviewed, suggest that phospholipase A2 (PLA2G2A) 
could be a biomarker for diagnosis of thrombotic 
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microangiopathy in MIS-C190. The lectin complement 
pathway might also have an important role in the patho-
genesis of diseases associated with SARS-CoV-2, as a 
result of the carbohydrate-residue-rich surface structures 
of the virus201–203.

Therapeutic strategies
Treatment approaches to MIS-C aim to mute the exag-
gerated inflammatory response. Multiple approaches, 
borrowed from Kawasaki disease and other hyperin-
flammatory syndromes, have been considered, ranging 
from IVIG to glucocorticoids and immunotherapy204,205. 
MIS-C treatment regimens described in 24 stud-
ies, involving 1,020 individuals, are summarized 
in Table 3, highlighting the many variations on the 
theme of attempting to calm overactive inflamma-
tory responses6,17,20,94,100–114,164. In most studies, most 
(70–100%) of the patients were treated with IVIG as 
the first-line agent, with satisfactory results. Steroids 
were the second most common treatment employed for 
patients with MIS-C.

Shock and cardiovascular manifestations comprise 
a predominant mode of presentation of MIS-C, and 

high-dose glucocorticoids have been advocated for, 
and used successfully in, patients with shock. Widely 
followed guidance from the ACR recommends IVIG as 
first-line therapy in hospitalized patients with MIS-C, 
with addition of glucocorticoids in the presence of 
shock, organ-threatening disease or refractory disease149. 
In a study of 181 children with suspected MIS-C, IVIG 
alone had a higher failure rate than the use of IVIG with 
methylprednisolone (OR 0.25; 95% CI 0.09–0.70)206. 
By contrast, results from a multinational observational 
cohort study that involved 615 children with suspected 
MIS-C identified no difference in acute outcomes 
between primary treatment with IVIG alone, IVIG with 
steroids or steroids alone207. In view of the apparently 
important role of IL-1β in the pathogenesis of MIS-C, 
anakinra (an IL-1 receptor antagonist) has been used in 
MIS-C that is refractory to therapy with IVIG or ster-
oids, extrapolating from its success in small groups of 
patients with IVIG-resistant Kawasaki disease122,148,208,209.

Zonulin-dependent loss of intestinal mucosal perme-
ability is implicated in mediation of the hyperinflam-
mation observed in MIS-C, and accordingly, a patient 
who did not respond to anti-inflammatory therapies 

Table 3 | Treatment of MIS-C

Study Cohort 
location

N  IVIG (%)  Glucocorticoids 
(%)

Other treatments Ref.

Dufort et al. USA 99 70 64 NR 14

Cheung et al. USA 17 77 82 Tocilizumab, 6% 15

Belhadjer et al. France, 
Switzerland

35 72 34 Anakinra, 9% 122

Kaushik et al. USA 33 54 51 Tocilizumab, 36%; remdesivir, 21%; anakinra, 12%; 
convalescent plasma therapy, 3%

125

Davies et al. UK 78 76 73 Tocilizumab, 4%; anakinra, 10%; infliximab, 9%; 
rituximab, 1%

126

Pouletty et al. France 16 94 18.8 Tocilizumab, 6%; anakinra, 6%; hydroxychloroquine, 6% 127

Toubiana et al. France 21 100 33 NR 128

Capone et al. USA 33 100 70 Tocilizumab, 9%; anakinra, 12%; infliximab, 3% 129

Hameed et al. UK 35 100 100 NR 130

Whittaker et al. UK 58 71 64 Anakinra, 5%; infliximab, 14% 131

Moraleda et al. Spain 31 65 68 Remdesivir, 6% 132

Dhanalakshmi et al. India 19 79 58 Tocilizumab, 5% 133

Miller et al. USA 44 82 96 Anakinra, 18% 134

Lee et al. USA 28 71 61 Anakinra, 18% 136

Riollano-Cruz et al. USA 15 80 20 Tocilizumab, 80%; remdesivir, 13%; anakinra, 13%; 
convalescent plasma therapy, 6%

137

Ramcharan et al. UK 15 66 33 NR 138

Grimaud et al. France 20 100 10 Tocilizumab, 10%; anakinra, 10% 139

Jonat et al. USA 54 83 79 NR 205

Feldstein et al. USA 186 77 49 Anakinra, 13% 13

Toubiana et al. France 23 100 61 NR 236

García-Salido et al. Spain 61 45 80 Tocilizumab, 24%; hydroxychloroquine, 55% 145

Shobhavat et al. India 21 52 86 Tocilizumab, 10% 261

Niño-Taravilla et al. Chile 26 77 88 Tocilizumab, 12%; infliximab, 4% 262

Tolunay et al. Turkey 52 93 71 Anakinra, 4% 263

IVIG, intravenous immunoglobulin; MIS-C, multisystem inflammatory syndrome in children; NR, not reported.
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was treated with the zonulin antagonist larazotide, with 
a satisfactory outcome152. In a pooled meta-analysis, 
D-dimer was found to be elevated in 92% of patients 
(330 out of 356)210. Because of the associated risk of 
hypercoagulability, and extrapolating from the man-
agement of Kawasaki disease, the use of anticoagulants 
such as acetylsalicylic acid and/or enoxaparin has been 
reported211,212.

MIS-C: distinct from Kawasaki disease?
Both Kawasaki disease and MIS-C have temporal asso-
ciations with infectious diseases and are associated with 
immune-system alteration, systemic inflammation 
and cytokine storm. Myocardial dysfunction, which is 
seen in both pathologies, might be a consequence of 
systemic inflammation213,214. An artificial intelligence 
computational analysis based on viral pandemics and 
disease-severity gene signatures, and in particular 
induction of IL15–IL15RA genes, has placed Kawasaki 
disease and MIS-C on the same host-immune-response 
continuum (although these results have not yet been 
peer reviewed)215. Consistently, patients with MIS-C 
have significantly higher levels of IL-15 than paediatric 
patients with COVID-19 (ref.189). However, the intensity 
of the immune response is high in MIS-C, which places 
it further along the severity spectrum than Kawasaki 
disease215.

A quarter to half of patients with MIS-C meet the 
full criteria for diagnosis of Kawasaki disease17,148,149,212,216. 
Without evidence of prior SARS-CoV-2 exposure in 
these patients, it might not be possible to differenti-
ate them from those with classic Kawasaki disease. 
Commonly reported clinical features of MIS-C include 
fever, mucocutaneous findings, myocardial dysfunction 
with cardiogenic or vasoplegic shock, gastrointestinal 
symptoms and neurological features including head-
ache and altered mental status (Table 4). Like Kawasaki 
disease, these clinical manifestations are not specific 
to MIS-C, and they could occur in other infectious or 
inflammatory conditions20.

Epidemiological and clinical differences
Despite the apparent similarities between MIS-C and 
Kawasaki disease, there are important epidemiological 
and clinical differences20,122,127. Kawasaki disease is typ-
ically a disease of young children <5 years old, whereas 
MIS-C has been reported in a wide age range from 1.6 to 
20 years, with a median age of 6–11 years20,217,218 (Table 2). 
In sharp contrast to Kawasaki disease, there is a surpris-
ing lack of reports of MIS-C from Japan and East Asian 
countries219,220. In fact, published data from the USA and 
Europe suggest that MIS-C is most commonly encoun-
tered in children of African and Hispanic heritage177,180. 
These epidemiological differences suggest that although 
MIS-C has phenotypic similarities to Kawasaki disease, 
they are essentially distinct syndromes.

Cardiac involvement is more prevalent and severe in 
MIS-C than in Kawasaki disease. Although a quarter of 
untreated patients with Kawasaki disease will develop 
coronary artery abnormalities, in the current era with 
a high level of clinical suspicion as well as early diag-
nosis and treatment, the incidence of coronary artery 

abnormalities in Kawasaki disease is <10%216,221–224. By 
contrast, our understanding of coronary artery dilation 
in MIS-C is still evolving, and incidence rates of 14–48% 
have been reported in various patient populations180,191,192 
(fig. 3). However, the adoption of standardized MIS-C 
management protocols has begun to reduce the rate 
of coronary artery involvement149. Cardiac MRI in 
MIS-C has demonstrated high signal intensity on 
T1-weighted and T2-weighted imaging, consistent with 
diffuse myocardial oedema, with no enhancement on 
late gadolinium imaging to suggest fibrosis225. Results 
from echocardiographic studies have demonstrated 
that global left ventricular longitudinal strain is signif-
icantly lower in individuals with MIS-C than in those 
with Kawasaki disease226. A longitudinal, single-centre 
study involving 15 children with MIS-C has demon-
strated significant improvement towards normalization 
of both ventricular function and coronary artery size 
over a 30-day follow-up period227.

Fewer than 10% of cases of Kawasaki disease mani-
fest as Kawasaki disease-shock syndrome (KDSS), which 
requires the use of intravascular fluid resuscitation and 
vasoactive medication228–231. Patients with KDSS tend to 
be older, have longer duration of fever and higher levels 
of inflammatory markers, and have a higher incidence of  
IVIG resistance as well as coronary abnormalities 
than those without KDSS232,233. By contrast, shock and 
depressed left ventricular systolic function are more 
frequent with MIS-C, for which reports indicate that 
40–80% of patients present with shock210,234–236 (fig. 3). In 
a retrospective comparison of a cohort of patients with 
KDSS with published data relating to MIS-C, individuals 
with KDSS were more likely than those with MIS-C to ful-
fil the diagnostic criteria for complete Kawasaki disease, 
with higher incidence of coronary artery aneurysms237.

Kawasaki disease has been reported to occur with 
MAS238,239. In a retrospective analysis of 638 patients with 
Kawasaki disease, the incidence of MAS was <2%240. 
However, this figure is likely to be an underestimation 
of the true incidence, as a result of an absence of sensi-
tive diagnostic criteria and a lack of awareness among 
health-care providers241. Patients with Kawasaki disease 
and MAS tend to have elevation of levels of IFNγ, TNF, 
serum neopterin, IL-18 and sTNFR-II242. A retrospective 
comparison of patients with MAS (as a complication of 
systemic-onset juvenile idiopathic arthritis) and MIS-C 
revealed that MAS was associated with lower levels of 
haemoglobin and fibrinogen, and higher ferritin and 
lactate dehydrogenase, whereas patients with MIS-C 
tended to have signs of shock and need of intensive 
care management243. Results that have not yet been peer 
reviewed, based on analyses of IFNγ and CXCL9 signal-
ling characteristics, suggest that >50% of patients with 
MIS-C have a MAS-like cytokine phenotype190, along 
with elevation of CD163, IL-2RA and ferritin (during the 
early period) in the plasma. However, although MAS has 
an association with neutropenia, patients with MIS-C, 
including those who meet the criteria for MAS, display 
neutrophilia. Thus, although KDSS and Kawasaki dis-
ease with MAS have overlapping clinical features with 
MIS-C, there are subtle differences that are likely to 
reflect the different cytokine profiles in these conditions.
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Gastrointestinal and neurological symptoms are 
also more commonly encountered in MIS-C than in 
Kawasaki disease134,235,236,244–247. The gastrointestinal 
manifestations include abdominal pain, vomiting and 

diarrhoea210,235,246, with rare presentations that resem-
ble appendicitis requiring surgical exploration248. In a 
national US registry consisting of 1,695 children and 
adolescents with active COVID-19 infections including 

Table 4 | Reported clinical features of multisystem inflammatory syndrome in children

Affected organ 
system

Symptoms Frequency of 
involvement (%)

Refs

Cardiovascular Shock 40–80 210,234–236

Cardiac arrhythmias 2 235

Abnormal ST- or T-wave segment 22 235

Prolonged QT interval 2 235

Pericardial effusion 13–28 235,246

Decreased LVEF by echo 31–58 234,235

Increased troponin 68–95 234,235

Myocarditis 36–87 210,236,246

Coronary artery dilation on CT 27 235

Coronary artery aneurysm

Mild

Moderate

Giant

14–48

22

7

1

234–236

235

235

235

Gastrointestinal Gastrointestinal symptoms 60–100 234–236

Diarrhoea 38–72 210,235

Vomiting 51–68 210,246

Abdominal pain 19–71 210,235

Ascites 21 235

Ileitis 9 235

Colitis 4 235

Ophthalmological Conjunctivitis 32–83 234–236,246,264

Periorbital erythema and oedema 20 264

Nervous system Neurological symptoms 13–35 210,235,236,249

Severe symptoms, including encephalopathy, stroke, central 
nervous system infection/demyelination, Guillain–Barré 
syndrome and acute cerebral oedema

3 249

Integumentary Rash 50–70 234,236,246

Erythematous skin rash 62 235

Hyperaemia, oedema or desquamation of extremities 26–51 235,264

Malar erythema 17 264

Skin eruptions 9–14 264

Desquamation in groin 26 236

Respiratory Upper respiratory tract infection 34 235

Lower respiratory tract infection 22 235

Pleural effusion on CT 20 235

Lung involvement on CT (bilateral pulmonary consolidation 
and ground-glass opacity)

13 235

Mucosal Oral mucosa hyperaemia 41 235

Red and/or cracked lips 37–49 246,264

Strawberry tongue 11–23 246,264

Lips and oral-cavity changes 74 234,236

Other Lymphadenopathy (cervical) 19–61 235,236,246

Extremity changes 8–52 234,236,246

LVEF, left ventricular ejection fraction.

www.nature.com/nrrheum

R e v i e w s

742 | December 2021 | volume 17 



0123456789();: 

MIS-C (n = 616), neurological symptoms were noted 
in 22% of the patient population (n = 365), with most 
of those affected having transient symptoms249. Among 
these 365 patients, 126 met the criteria for MIS-C. In 
the patients with neurological involvement (n = 365), 
43 (12%) had life-threatening neurological involvement 
(including encephalopathy, stroke, central nervous sys-
tem infection and/or demyelination, Guillain–Barré syn-
drome and acute cerebral oedema) and among which  
20 (47%) met the criteria for MIS-C. In a study of 286 
children with MIS-C located in 55 centres in 17 European 
countries, neurological involvement was identified in  
43 individuals (15%)235. In a pooled meta-analysis of data 
from 370 children with MIS-C, 133 (35.9%) had neuro-
logical symptoms210 (Table 4). Neurological involvement 
in Kawasaki disease is variable, reportedly affecting 
5–39% of patients250,251.

In contrast to those with Kawasaki disease, patients 
with MIS-C tend to have a worse acute clinical course 
and multisystem involvement, as illustrated by an 
increased requirement forintensive care management. 
A large study of >1,000 patients with Kawasaki disease 
revealed that 2.4% of these children required intensive 
care252. In stark contrast, an analysis of 783 cases of 
MIS-C determined that 68% of patients required inten-
sive care admission, 63% needed inotropic support, 28% 
had some form of respiratory support and 4% of patients 
required extra-corporeal membrane oxygenation253. 
Among 1,080 patients with MIS-C, intensive care 
admission was more likely in children aged >5 years 
old than in younger children, and in non-Hispanic 
Black patients than in non-Hispanic white patients, and 
coronary artery abnormalities were more common in 
boys than in girls254. Elevated acute-phase inflammatory 

markers, troponin, B-type natriuretic peptide and 
D-dimer levels also identified patents at risk of severe 
disease254. In a study evaluating 29 children with MIS-C 
in France, severe disease occurred in 52% of them and 
was associated with high persistent fever and high levels 
of inflammatory markers255. Although the reason for a 
more critical illness in the acute phase of MIS-C than in 
Kawasaki disease is unclear, it is thought to be linked to 
the cytokine storm in MIS-C256,257.

Immunological differences
In several small studies, comparative immune profiling 
of children with MIS-C and Kawasaki disease has been 
performed, to differentiate between these two disease 
entities. MIS-C is associated with lymphopenia, lower 
white blood cell and naive CD4+ T cell counts, and 
increased central and effector memory T cell subpopu-
lations, compared with Kawasaki disease103. IL-17 is a 
mediator of inflammation in Kawasaki disease, but is less 
prominent in MIS-C103. In a comparison of cytokine pro-
files, levels of circulating IFNγ were significantly higher 
in patients with severe forms of MIS-C than in those 
with milder MIS-C or Kawasaki disease258.

In a study of the immunological profiles of pae-
diatric patients, 75% of those with MIS-C, but none 
with Kawasaki disease, TSS or COVID-19, displayed 
non-HLA-biased, SARS-CoV-2 non-reactive, poly-
clonal expansion of TCR Vβ 21.3+ activated CD4+ 
and CD8+ T cells165. Notably, these Vβ 21.3+ T cells 
had high expression of CX3CR1, a marker previously 
identified on the activated CD8+ T cells of patients 
with MIS-C185. The remarkable specificity of Vβ 21.3+ 
T cell subset expansion noted in MIS-C is consistent 
with superantigen-mediated activation of the immune 
system163, whereas in Kawasaki disease, evidence of a 
role of superantigens in pathogenesis is lacking50.

Autoantibody profiles have been compared in 
patients with MIS-C and Kawasaki disease103. Levels of 
antibodies to some vascular endothelial cell proteins, 
such as endoglin, were higher in both groups of patients 
than in healthy controls, whereas some autoantibodies 
(such as that to EGF-like repeat and discoidin I-like 
domain-containing protein 3) were overexpressed in 
Kawasaki disease compared with MIS-C. To confound 
matters, plasma levels of endoglin were elevated in both 
sets of patients compared with healthy children, rais-
ing the possibility that antibodies to endothelial cells  
were the result, rather than the cause, of vascular dam-
age. Another possibility is that the S protein superanti-
gen of SARS-CoV-2 might cause aberrant activation of  
B cells162.

Some laboratory parameters are important differen-
tiators between Kawasaki disease and MIS-C. Although 
both syndromes involve a diffuse hyperinflammatory 
response, patients with MIS-C tend to have a lower plate-
let count, lower absolute lymphocyte count and higher 
levels of C-reactive protein, N-terminal pro-B-type 
natriuretic peptide, troponin and ferritin16,17,20,94,100–114,164. 
Additionally, coagulation abnormalities are com-
mon, including elevation of D-dimer and fibrinogen 
levels11,12,257,259. Hyponatraemia is another common lab-
oratory finding in patients with MIS-C127. The presence 
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Fig. 3 | Comparative incidence of clinical signs in MIS-C and Kawasaki disease. 
Percentage incidence of particular symptoms in patients with multisystem inflammatory 
syndrome in children (MIS-C) or Kawasaki disease is shown, with the values derived  
from published reports210,231,232,234–236,246,249,250,264–270. Although some clinical signs, such as 
fever and cervical lymphadenopathy are equally prevalent in both MIS-C and Kawasaki 
disease, the incidence of other symptoms, including shock, coronary artery involvement 
and gastrointestinal symptoms (vomiting, diarrhoea or abdominal pain), are characteristic 
of MIS-C. a‘Conjunctival injection’ refers to bilateral non-exudative conjunctivitis in 
Kawasaki disease. b‘Rash’ refers to polymorphous rash in Kawasaki disease. c‘Coronary 
artery dilation of aneurysm’ refers to incidence in untreated cases of Kawasaki disease.
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of burr cells and neutrophils with toxic granulation can 
also discriminate MIS-C from severe COVID-19 (ref.150). 
Finally, evidence of recent SARS-CoV-2 infection, par-
ticularly by positive serology, is a diagnostic indicator 
of MIS-C148,149.

Conclusion
Epidemiological and clinical differences reveal that 
although MIS-C has phenotypic similarities to Kawasaki 
disease, they are different syndromes. They have var-
ying degrees of hyperinflammation and dysregulated 
immune responses131. Children with MIS-C are, in 
general, more critically ill, with prominent gastroin-
testinal symptoms, cardiac involvement with shock, 
haematological abnormalities and elevated acute-phase 
reactants. They have positive SARS-CoV-2 serology, 
suggesting a link to prior clinical or subclinical infec-
tion or exposure. It is likely that a combination of path-
ogen and host factors is involved in the genesis of an 
intense aberrant activation of both innate and adaptive 
immune responses and subsequent cytokine storm16,18. 
Some of the pathogen-related factors include antigen 
mimicry of host antigens, and superantigen proper-
ties of viral proteins. Potential host factors include 
age and immune-system immaturity, altered intesti-
nal microbiota, nutritional deficiencies and genetic 
(including inborn errors of immunity) and epigenetic 
predisposition13. However, to what extent each of these 
factors contributes, and how they interact to cause the 
clinical syndrome, are relative unknowns that need 
further exploration. Various lines of evidence based 
on inflammatory parameters, clinical signs or gene 
analyses have evoked the possibility that MIS-C is  

a heterogeneous complex disorder. Current data on the 
immune signatures in patients with MIS-C are based on 
small sample size, non-homogeneous cohorts. Hence, 
analysis of dynamic changes in the immune signatures 
of patients with MIS-C and their comparison with 
those with Kawasaki disease in a large homogeneous 
cohort is needed, to accurately determine the similar-
ities and distinct features of the two disease entities. 
Nevertheless, with the evidence of elevation of signa-
tures of autoimmunity in MIS-C, and reports of var-
ious post-COVID-19 conditions in adults, long-term 
follow-up of patients with MIS-C might be advisable, 
because of the possibility of relapse. Notably, however, 
relapse is rare in Kawasaki disease, which might suggest 
that recurrence is also unlikely in MIS-C.

While researchers and clinicians navigate the pos-
sibilities and evaluate the best treatment options for 
patients affected by COVID-19-related illnesses, it is 
imperative to establish registries and dedicated multidis-
ciplinary research teams to investigate the pathogenesis 
and specific therapeutic strategies in MIS-C. An impor-
tant step towards this end was the workshop that was 
convened by the NIH in June 2020, which aimed to bring 
together the experts on the subject, to initiate dialogue 
leading to future studies260. In conclusion, MIS-C has 
important epidemiological, clinical and immunological 
differences from Kawasaki disease, enabling its classifi-
cation as a separate syndrome. Study of MIS-C will con-
tinue to enhance our understanding of these conditions 
that are related by their association with the cytokine 
storm phenomenon.
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The maintenance of immune homeostasis is of para-
mount importance in the prevention of autoimmun-
ity and the development of excessive effector immune 
response and host tissue injury1. In this respect, a potent 
T cell growth factor, later named interleukin-2 (IL-2), 
was discovered in 1976 in supernatants of activated 
T cell culture2 and cloned in 1983 (ref.3). IL-2 at high 
doses seemed to be important for the differentiation of 
effector and memory effector T cells, which led to the 
initial development of this cytokine as an anti cancer 
drug. It took 30 years to recognize that the main func-
tion of IL-2 is directed towards regulatory T (Treg) cells 
rather than conventional T cells4,5. Indeed, IL-2 is the 
non- redundant key cytokine for differentiation, sur-
vival and function of Treg cells6–9. Treg cells were initially 
defined as CD4+CD25hi T cells10, which express high 
levels of the α chain of the IL-2 receptor (IL-2Rα, also 
known as CD25). In humans, the consensus definition 
of Treg cells is that they are CD4+FOXP3+CD25+CD127low 
T cells11, and they account for approximately 5–10% of 
peripheral CD4+ T cells12–14. However, in some diseases, 
such as systemic lupus erythematosus (SLE), CD25 
and FOXP3 can be downregulated on Treg cells, mak-
ing the identification of Treg cells difficult15,16. Treg cells 
are crucial for the development and maintenance of 
self- tolerance. Most Treg cells develop in the thymus, 
while some can develop from naive CD4+ T cells in 
the periphery17. In addition, ‘induced’ Treg cells can 
be generated in vitro from activated CD4+ T cells by 
TGFβ treatment. Experimental ablation of Treg cells in 
mice immediately triggers severe inflammation and the 
development of multi- organ autoimmune diseases5. 

This observation indicates that, in healthy individuals, 
conventional T cells can undergo exaggerated acti-
vation and attack normal tissues if not controlled by  
Treg cells.

A small population of CD8+ Treg cells with a phe-
notype similar to that of CD4+ Treg  cells (that is,  
a CD8+FOXP3+CD25+CD127low phenotype) has been 
identified in mice and humans18–20, although their func-
tion is poorly defined. Other T cells also display immu-
nosuppressive activity, including TGFβ- producing 
T helper 3 (TH3) cells, IL-10 producing type 1 Treg 
(Tr1) cells21, CD8+FOXP3+CD45RClow T  cells and 
CD8+FOXP3+CD25+TNFR2+ T cells22.

Mutation of molecules in the IL-2 signalling path-
way in humans and mice is associated with systemic  
inflammation linked to Treg cell deficiencies. Risk vari-
ants in the genes encoding IL-2, the IL-2R subunits 
IL-2Rα or IL-2Rβ, and the downstream signalling factors 
STAT5A, STAT5B, FOXP3 and PTPN2, lead to inflam-
mation and/or autoimmunity6,23. Treg cell deficiency or 
reduced function have been reported in rheumatic dis-
eases, including rheumatoid arthritis (RA), SLE, primary 
Sjögren syndrome (pSS), ankylosing spondylitis24, pso-
riatic arthritis25, juvenile idiopathic arthritis26, systemic  
sclerosis (SSc)27,28, sarcoidosis and others5,29.

Restoration of the immune balance by increasing 
Treg cell number and/or function thus represents the 
basis of therapeutic efforts to restore tolerance and mit-
igate tissue inflammation and injury. In this Review, we 
discuss Treg cell dysregulation in rheumatic diseases and 
the evolving therapeutic efforts to restore the function of 
these cells with IL-2 or IL-2- derived molecules.

 Interleukin-2 and regulatory T cells 
in rheumatic diseases
Antonios G. A. Kolios  1,2, George C. Tsokos  1 and David Klatzmann3,4 ✉

Abstract | Failure of regulatory T (Treg) cells to properly control immune responses leads invariably 
to autoimmunity and organ damage. Decreased numbers or impaired function of Treg cells, 
especially in the context of inflammation, has been documented in many human autoimmune 
diseases. Restoration of Treg cell fitness and/or expansion of their numbers using low- dose natural 
IL-2, the main cytokine driving Treg cell survival and function, has demonstrated clinical efficacy in 
early clinical trials. Genetically modified IL-2 with an extended half- life and increased selectivity 
for Treg cells is now in clinical development. Administration of IL-2 combined with therapies 
targeting other pathways involved in the expression of autoimmune diseases should further 
enhance its therapeutic potential. Ongoing clinical efforts that capitalize on the early clinical 
success of IL-2 treatment should bring the use of this cytokine to the forefront of biological 
treatments for autoimmune diseases.
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IL-2 biology
IL-2–IL-2R signalling. IL-2 is a four α- helix bundle 
cytokine that is produced mostly by conventional T cells 
after engagement of the T cell receptor (TCR) and the 
costimulatory molecule CD28 (refs6,30). Activated CD4+ 
T cells produce IL-2 in response to antigen- presenting 
dendritic cells that colocalize with Treg cells in lym-
phoid organs4,31–35. IL-2 is also produced by activated 
CD8+ T cells, natural killer (NK) cells and NK T cells 
and, in some conditions, dendritic cells and mast cells, 
albeit at lower levels than by CD4+ T cells5. Of note, 
FOXP3 represses the expression of Il2 in Treg cells36. 
Consequently, Treg cells cannot produce IL-2 and rely 
entirely on an exogenous supply of this cytokine for their 
survival and function.

IL-2R consists of three subunits: the α chain (IL-2Rα), 
the β chain (IL-2Rβ; also known as CD122) and the  
γ chain (IL-2Rγ; also known as the common γ chain 
(γc) or CD132)37. IL-2R occurs in monomeric (IL-2Rα), 
dimeric (IL-2Rβ–IL-2Rγ) or trimeric (IL- Rα–IL-2Rβ–
IL-2Rγ) variants4,38, which bind to IL-2 with increasing 
affinity5. Dimeric IL-2R is constitutively expressed at 
high levels on the cell surface of memory CD8+ T cells 
and NK cells and at lower levels on memory CD4+ T cells 
and naive T cells23. Trimeric IL-2R is constitutively 
expressed at high levels on Treg cells10 and at low levels 
on human and mouse B cells, type 2 innate lymphoid 
cells and activated conventional T cells39. The affinity of 
trimeric IL-2R for IL-2 (Kd = 10−11 M) is two- log higher 
than that of dimeric IL-2R (Kd = 10−9 M) and three- log 
higher than IL-2Rα (Kd = 10−8 M) (fig. 1).

Three major pathways are involved in downstream 
IL-2 signalling40: JAK–STAT, PI3K–AKT–mTOR and 
MAPK pathways38,39,41,42. JAK–STAT activation accounts 
for >90% of IL-2 signalling, especially STAT5 phospho-
rylation in Treg cells43. After IL-2 binding, the IL-2R com-
plex is internalized, at which point the fate of the IL-2R 
subunits diverge: while IL-2Rα is recycled, IL-2Rβ and 
IL-2Rγ are degraded44.

Various transcription factors are involved in expres-
sion of Il2 upon TCR activation primarily in CD4+ T cells: 
nuclear factor of activated T cells (NFAT) family members, 
activator protein 1 (AP-1), nuclear factor- κB (NF- κB), 

octamer- binding protein 1, and the high- mobility group 
proteins HMG- I and HMG- Y promote IL2 expression, 
whereas NFAT members in complex with FOXP3 inhibit 
IL-2 expression4,23,45. Furthermore, positive regulators of 
IL2 expression include SP1, early growth response pro-
tein 1 and GA- binding protein. Protein phosphatase 2A 
(PP2A) together with AMP- activated protein kinase are 
both upregulated in Treg cells and constrain mTORC1 
signalling, minimize glucose metabolism and promote 
FOXP3 expression46,47. Negative regulators of IL-2 pro-
duction include zinc- finger E- box- binding homeo-
box 1, cAMP response element- binding protein and  
B lymphocyte- induced maturation protein 1 (BLIMP1)38,48. 
Control of PI3K by its negative regulator PTEN is important  
for Treg cell lineage stability and homeostasis49,50.

Key points

•	Dysregulation of regulatory T (Treg) cells	and	a	consequent	inability	to	correctly	control	
immune	responses	leads	invariably	to	autoimmunity	and	organ	damage.

•	Numerical	or	functional	impairment	of	Treg cells,	especially	in	the	context	of	
inflammation,	occurs	in	many	human	autoimmune	diseases,	such	as	rheumatoid	
arthritis	and	systemic	lupus	erythematosus	(SLE).

•	Restoration	of	the	immune	balance	by	restoring	Treg cell	numbers	and/or	function	 
is	therefore	the	basis	of	therapeutic	efforts	to	restore	tolerance	and	mitigate	tissue	
inflammation	and	injury.

•	Low-	dose	IL-2	(0.3–3	MIU	daily	in	humans)	is	now	an	established	therapy	 
in	autoimmune	diseases;	it	stimulates	mainly	Treg cells	and	is	well	tolerated.

•	Most	studies	of	low-	dose	IL-2	in	SLE	have	shown	a	clinically	significant	improvement	
(as	assessed	by	the	SLE	Disease	Activity	Index	(SLEDAI)	or	the	SLE	Responder	Index	4	
(SRI-4))	and	a	reduction	in	concomitant	prednisone	of	≥50%	in	44–67%	of	patients.

•	Genetically	modified	IL-2	proteins	(‘muteins’)	or	IL-2–anti-	IL-2R	antibody	complexes	
with	an	extended	half-	life	and	increased	selectivity	for	Treg cells	are	now	in	clinical	
development. Fig. 1 | IL-2 signalling pathways and formulations.  

The IL-2 receptor (IL-2R) consists of three subunits (IL-2Rα, 
IL-2Rβ and IL-2Rγ) that form monomeric (IL-2Rα), dimeric 
(IL-2Rβ–IL-2Rγ) or trimeric (IL- Rα–IL-2Rβ–IL-2Rγ) receptors 
that bind to IL-2 with increasing affinity (Kd). Dimeric IL-2R 
is constitutively expressed on memory CD8+ T cells and 
natural killer cells and trimeric IL-2R on regulatory T (Treg) 
cells, indicating that Treg cells are more sensitive to low 
levels of IL-2 than other cell types. On IL-2 binding, three 
major pathways are responsible for downstream signalling, 
namely, PI3K–AKT–mTOR (left), JAK–STAT (middle) and 
MAPK (right), which are schematically depicted for  
trimeric IL-2R. The JAK–STAT pathway accounts for 90% of 
IL-2–IL-2R signalling. IL-2 binding leads to heterodimerization 
of IL-2Rβ and IL-2Rγ, activating the tyrosine kinases JAK1 
and JAK3, respectively, which phosphorylate tyrosine 
residues in IL-2Rβ. This promotes recruitment of signalling 
molecules such as PI3K, STAT5 or SHC1, which are 
phosphorylated by JAKs, resulting in specific pathway 
activation, nuclear translocation of transcription factors 
and finally targeted transcription regulation that induces 
cell activation, differentiation and proliferation. PI3K 
phosphorylates phosphatidylinositol 4,5- bisphosphate 
(PIP2), resulting in production of phosphatidylinositol-3,4, 
5- trisphosphate (PIP3), which promotes recruitment of 
phosphoinositide- dependent kinase l (PDK1) and AKT (also 
known as PKB) to the cell membrane. Phosphorylation of 
AKT by PDK1 and mTOR complex 2 (mTORC2) is necessary 
for full activation. AKT phosphorylation of tuberous 
sclerosis complex (TSC) proteins relieves TSC- mediated 
inhibition of RHEB (not shown) to activate mTORC1, which 
phosphorylates p70 ribosomal S6 kinase (p70S6K), a kinase 
that is important for survival, proliferation and protein 
translation. Tyrosine phosphorylation of STAT5 leads to its 
dimerization or tetramerization, nuclear translocation and 
transcription activation or repression. Phosphorylation of 
SHC1 promotes recruitment of GRB2 and SOS, forming  
a complex that catalyses GTP exchange on RAS and 
subsequent activation of the MAPK pathway. Depending 
on the concentration and duration of exposure, IL-2 
induces different signals in conventional T cells compared 
with Treg cells, which influences the outcome of a localized 
immune response in a pro- inflammatory setting. Aside from 
natural IL-2, enhanced IL-2 formulations such as muteins  
or IL-2–anti- IL-2 antibody complexes can be targeted  
to Treg cells or conventional T cells in autoimmune or  
cancer settings, respectively, and, depending on modified 
binding properties, induce stronger IL-2 signalling. BLIMP1, 
B lymphocyte- induced maturation protein 1; PP2A, protein 
phosphatase 2A; Teff cells, effector T cells.
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IL-2 and Treg cells. IL-2 is required for the differentiation, 
immunosuppressive function, homeostasis and survival 
of Treg cells6,23,39,41. Treg cells can suppress or modulate 
autoreactive T cells and other immune cells, such as 
antigen- presenting cells, through several mechanisms: 
secretion of anti- inflammatory cytokines (such as TGFβ, 
IL-10 and IL-35); stimulation of dendritic cells following 
transendocytosis of CD80/86, resulting in the produc-
tion of the immunosuppressive enzyme indoleamine 
2,3- dioxygenase51,52; conversion of ATP to adenosine by 
CD39 and CD73 (ref.53) consumption of local IL-2 by the 
trimeric IL-2R, thereby making it unavailable for acti-
vating conventional T cells and NK cells54,55; and direct 
cytotoxicity against CD8+ T cells and NK cells56,57.

Besides IL-2Rα, IL-2 stimulation leads to upregulated 
expression of numerous molecules that are important 
for Treg cell function, including CTLA4, PD1, TIM3, 
LAG3, CD39 and TNF receptor superfamily members 
such as GITR, OX40 and TNF receptor 2 (TNFR2), all of 
which result in improved immunosuppressive capacity 
of Treg cells7,34,36,58–60. Parallel upregulation of the genes 
encoding the anti- apoptotic molecules BCL-2 (ref.34) and 
FOXP1 might enhance FOXP3 binding to the promoters 
of target genes61.

Treg cells express high levels of TNFR2, and TNFR2 
deficiency leads to a TH17 cell- like phenotype, underlin-
ing the importance of TNFR2 for maintaining Treg cell 
identity62. TNFR2+ Treg cells comprise ~40% of peripheral 
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Treg cells in mice and have increased immunosuppressive 
functions63,64. In addition, CD38high Treg cells seem to have 
increased immunosuppressive capacity in mice with 
experimental autoimmune encephalomyelitis (EAE)65 
and in patients with multiple myeloma66.

In vitro assays measuring pSTAT5 phosphorylation 
during IL-2 signalling indicate that memory Treg cells 
(defined as CD4+CD25hiFoxP3hiCD44hiCD45ROhiCD27hi 
BLC2hiCCR7low T cells) are at least 20- fold more sensitive 
to IL-2 than effector memory CD4+ T cells (defined as 
CD4+CD44hiCD45ROhiCD45RA−CD127hiCCR7− T cells) 
or CD56hi NK cells, and 40- fold more sensitive than 
memory CD8+ T cells. Furthermore, when examining 
the gene activation programme downstream of STAT5 
phosphorylation, Treg cells are at least 100- fold more sen-
sitive to IL-2 than memory CD4+ T cells34. This supports 
the unique ability of Treg cells to be effectively modulated 
by low amounts of IL-2 via their high affinity trimeric 
IL-2R.

IL-2 and TH17 cell differentiation. TH17 cells are crucial 
for host defence against pathogens67,68, and although they 
protect the intestine against inflammation, they are also 
involved in the pathogenesis of autoimmune diseases 
such as SLE and psoriasis69. TH17 cell differentiation 
is induced by TGFβ, IL-21 and IL-6 through STAT3- 
mediated IL-23 signalling, which increases the expres-
sion of the nuclear receptor retinoic acid- related orphan 
receptor-ɣt (RORγt; encoded by RORC)23,67. IL-2 inhibits 
TH17 cell differentiation by several mechanisms, includ-
ing STAT5- mediated repression of RORγt expression, 
competition between STAT5 and STAT3 at the Il17a 
locus (reducing IL-17 production) and repression of the 
IL-6 receptor genes70–72. Thus, it is important to high-
light that IL-2 is important not only for the activity of 
Treg cells, and thereby regulation of conventional T cells, 
but also in inhibiting differentiation of TH17 cells.

IL-2 and follicular T cells. T follicular helper (TFH) 
cells foster the proliferation, survival and differenti-
ation of germinal centre B cells by producing various 
cytokines, including IL-4, IL-9, IL-10 and IL-21, or 
by CD40 ligand co- stimulation. IL-2 inhibits TFH cells 
at an early stage of their differentiation73,74. The effect 
of IL-2 on TFH cells is mediated by downregulation of  
BCL-6 expression, repression of genes important 
for TFH cell differentiation75 and activation of AKT  
and mTORC1 signalling, which leads to BLIMP1 and  
T- bet expression76, all of which result TFH phenotype 
repression.

The origin of T follicular regulatory (TFR) cells is not 
fully elucidated. Upon activation of naive Treg cells that 
are CXCR5−, a population of CD25+ TFR cells expressing 
intermediate levels of CXCR5 emerges. These TFR cells 
can then upregulate CXCR5, which mediates their 
routing to the lymph node germinal centre (GCs)77. 
Terminally differentiated TFR cells within the GCs do 
not express IL-2Rα78. The biology of TFR cells is also 
less well understood than that of TFH cells, but TFR cells 
seem to inhibit the TFH cell–B cell interaction by several 
mechanisms, including CTLA4 expression, reduction of 
glycolysis in B cells, production of inhibitory cytokines 

such as IL-10, TGFβ and granzyme B, and possibly 
the consumption of IL-1 through their expression  
of the IL-1 inhibitory receptors IL-1R2 and IL-1RA78,79. 
Altogether, because of the regulated CD25 expression 
on TFR cells and the inhibition of TFH differentiation, 
IL-2 should probably modulate antibody production. 
This effect, which could be important in the context 
of antibody- mediated autoimmunity, has not yet been 
studied in detail.

Treg cells, IL-2 and tissue regeneration. In non- lymphoid 
tissues, Treg cells have an important role in tissue regen-
eration. The gene expression profile of tissue- resident 
Treg cells depends on the host tissue and environmental 
factors80–82. Treg cells promote tissue regeneration in the 
intestine, skin, skeletal muscle, visceral adipose tissue, 
central nervous system, lung, liver and placenta, and 
protect and facilitate the stem cell niche in the bone 
marrow1,83–87. The characteristics of Treg cell function in 
tissue repair vary depending on the context of the tissue 
and involve increased signalling through the IL-33–IL-1 
receptor- like 1 (IL-1RL1; also known as ST2) axis (which 
enhances the tissue- protective ability of Treg cells in mice) 
and production of the anti- inflammatory cytokine  
IL-10 and/or the Treg cell effector amphiregulin (encoded 
by AREG)88. For example, Treg cells account for up to 50% 
of TCRβ+CD4+ T cells that are recruited to the muscle 
following injury89. In a mouse model of Duchenne 
muscular dystrophy, depletion of Treg cells exacerbated 
muscle injury and inflammation, which was reversed by 
IL-2 treatment (in the form of an IL-2–anti- IL-2 anti-
body complex, see below)90. Specific deletion of AREG 
in Treg cells leads to lung fibrosis after influenza virus 
infection, further highlighting the role of Treg cells in  
tissue regeneration and homeostasis91–93.

Treg cells, IL-2 and metabolism. Treg cells meet their 
metabolic requirements by fatty acid and pyruvate 
oxidation47, whereas conventional T cells mainly use 
glycolysis94. However, mTORC1- driven glycolysis is 
required during Treg cell activation and proliferation, 
which is dependent on IL-2. Because mTORC1 inhibits 
FOXP3 expression, the suppressive capacity of Treg cells 
is reduced temporarily95,96. During Treg cell induction 
and maintenance, enhanced FOXP3 expression repro-
grammes peripheral Treg cells to preferentially metabo-
lize fatty acids97,98. This metabolic switch enables Treg cells 
to proliferate in the presence of low levels of local lep-
tin from adipocytes or short- chain fatty acids in the 
intestine95,99. Distinct metabolic pathways can influence 
the quality and extent of T cell responses, with glycolysis 
favouring conventional T cell generation and fatty acid 
oxidation and pyruvate oxidation favouring Treg cell gen-
eration. Inhibition of certain metabolic enzymes could 
limit autoimmunity.

Treg cells in the pro- inflammatory environment. While 
Treg  cells control the inflammatory response, they 
become less efficient within inflamed tissues100 in which 
Treg cells may even become unstable by losing FOXP3 
expression and converting to a phenotype that is more 
characteristic of conventional CD4+ T cells; they are 
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then referred to as ‘ex-Treg’ cells. Pro- inflammatory con-
ditions defined by elevated IL-6 or TNF levels, as in the 
inflamed synovial tissue, inhibit the immunosuppressive 
function of Treg cells. However, TNF has been claimed 
to enhance the immunosuppressive capacity of Treg cells 
by signalling through TNFR2 (ref.101). In addition, 
Treg cells positive for Helios, a marker of thymic Treg cells, 
migrate to inflamed tissue and suppress inflammation in  
active SLE102,103.

IL-2 and Treg cells in rheumatic diseases
IL-2 and Treg cells in RA. RA is a chronic, inflammatory, 
destructive joint disease104, and autoantibodies are pres-
ent in two- thirds of patients (seropositive RA)105. The 
inflamed synovium in RA contains increased numbers of 
synoviocytes106 and CD4+ memory T cells and diffuse or 
ectopic germinal centres with on- site affinity maturation  
and antibody production107,108 (fig. 2).

The immunosuppressive capacity and number of 
Treg cells in patients with RA is controversial, as there are 
reports that these are decreased, normal or increased62. 
RA, like SLE and type 1 diabetes mellitus (T1DM), is 
associated with low IL-2 production that affects Treg cell 
fitness5,34,109–112. Polymorphisms in FOXP3 and CTLA4 
and upregulated expression of pro- inflammatory 
cytokines, including TNF, IL-6 and IL-17, have been 
reported in association with reduced Treg cell activity 
or numbers, which correlate with increased disease 
activity113. Furthermore, direct killing of Treg cells by 
autoreactive antigen- specific CD8+ T cells in the syn-
ovial membrane has been reported114. In addition, the 
abundance of high- avidity CD8+ T cells correlates with 
failure to respond to treatment, whereas low- avidity, 
TNF- producing CD8+ T cells are present in patients with 
RA who respond to treatment with TNF inhibitors114. 
Diminished function and numbers of Treg cells in RA 
could participate in disease pathogenesis.

IL-2 and Treg cells in SLE. SLE is a heterogeneous, com-
plex autoimmune disease with multifactorial aetiology, 
characterized by generalized loss of immune tolerance 
leading to autoantibody production and inflammation 
of multiple organs115. Autoimmunity in SLE has been 
linked to T cell and B cell abnormalities that are induced 
by environmental and hormonal triggers in genetically 
susceptible individuals116 (fig. 3).

The role of Treg  cells and IL-2 in SLE has been 
extensively reviewed elsewhere117–119. The number and 
functional capacity of Treg cells in SLE is unclear, with 
conflicting reports of these cells being impaired or nor-
mal, probably owing to diverse definitions of Treg cells, 
different gating strategies in flow cytometry analysis and 
inclusion of activated IL-2Rα+CD4+ T cells62,119. Indeed, 
as a result of low IL-2 availability, Treg cells from patients 
with SLE express lower to undetectable levels of IL-2Rα, 
which can be re- induced by in vitro stimulation with IL-2 
(refs117–119). This low IL-2Rα expression correlates with 
disease activity and circulating anti- dsDNA antibody lev-
els, underlining its clinical relevance118,119. In agreement 
with these findings, Treg cells from IL-2- deficient mice 
show significantly reduced IL-2Rα levels7. In this con-
text of Treg cell insufficiency, autoantibody production is 

driven by nuclear antigens that are released through cell 
apoptosis and stimulation of Toll- like receptors (TLRs) 
and the subsequent production of type I interferon120. 
Pathogenic differentiation of conventional T cells is 
mediated by abnormal TCR signalling, PI3K–Akt–
mTOR pathway (including downstream molecules such 
as decreased PP2A, activated CaMK4, increased CD44, 
increased ROCK and decreased SRSF1) and JAK–STAT 
pathway activation, resulting in abnormal production  
of cytokines (increased production of pro- inflammatory 
cytokines such as interferons or IL-23/IL-17 and 
decreased production anti- inflammatory or regulatory 
cytokines such as IL-2)121, and alterations in immune  
metabolism95.

IL-2 production and signalling have been shown 
to be impaired in patients with SLE and mouse mod-
els of SLE110,122–126 at the transcription level because of 
increased binding of cyclic AMP response element 
modulator- α (CREMα) to the Il2 promoter (enabled 
by CaMK4 activation127), and decreased levels of SRSF1 
(ref.128), NF- κB and AP-1 (ref.129). Decreased expression 
of IL-2Rα and STAT5 on Treg cells in SLE also impairs 
IL-2 signalling122,130.

IL-2 and Treg  cells in other rheumatic diseases. 
Osteoarthritis is a TH1 cell- mediated low- grade, chronic 
inflammatory disease of the cartilage that is similar to 
but less severe than RA131. Increased numbers of syno-
vial membrane Treg cells, with high expression of CTLA4, 
PD1 and GITR compared with peripheral Treg cells132, 
have been reported in osteoarthritis. In addition, an 
increased abundance of TIM3− Treg cells is associated 
with lower production of IL-10 and advanced stages of 
osteoarthritis131.

Inflammatory spondyloarthropathies include anky-
losing spondylitis133 and psoriatic arthritis134. In ankyl-
osing spondylitis, IL-2 signalling and the functional 
capacity and number of peripheral blood Treg cells are 
decreased24, whereas elevated Treg cell numbers in the 
synovial fluid correlate with disease remission135. In 
juvenile idiopathic arthritis, a heterogeneous group of 
paediatric autoimmune arthritides, impaired immuno-
suppressive function of peripheral blood and synovial 
Treg cells has been reported26,136.

pSS is a systemic autoimmune epithelitis of exocrine 
glands, primarily the salivary and lacrimal glands. In  
pSS, elevated TLR3 expression in salivary glands, 
autoantigen presentation by apoptotic epithelial cells, 
pro- inflammatory cytokine production and differenti-
ation of TH1 cells, TH17 cells and TFH cells, and subse-
quent production of antibodies against SSA/Ro and/or 
SSB/La by B cells, causes epithelial hypofunction that 
presents clinically as sicca (dryness) of the eyes and 
mouth, pain and fatigue137. Treg cell number but not 
function is reduced in salivary glands and peripheral 
blood of patients with pSS138,139, along with reduced 
serum IL-2 levels140. In addition, elevated circulating 
levels of Helios+ Treg cells inversely correlate with IgG 
and IgM levels and are significantly higher (P < 0.05) in 
anti- SSB/La seronegative patients, suggesting that these 
Treg cells are important for suppression of autoantibody 
production in B cells141. Elevated levels of circulating 

NaTure reviews | RhEumAToLogy

R e v i e w s

  volume 17 | December 2021 | 753



0123456789();: 

CD4+CD25−GITR+ suppressive T cells in patients with 
inactive pSS have been interpreted as revealing a novel 
Treg cell population142. Studies using only IL-2Rα+ T cells 
to delineate Treg cells are difficult to interpret because 
they most probably include activated T cells and exclude 
CD25− Treg cells139.

SSc is characterized by immune dysregulation, vas-
culopathy and fibrosis. TLR- mediated innate immunity  

drives a TH2 cell- mediated immune response that 
involves production of IL-4, IL-5 and IL-13, simulat-
ing pro- fibrotic M2 monocytes/macrophages to secrete 
TGFβ143. In addition, TH17 cells lead to increa sed col-
lagen synthesis as well as CD8+ T cells to increased 
endothelial cell injury, where the latter induces 
antigen- promoted B cell differentiation28. Treg cells in SSc 
are functionally impaired, with suggested mechanisms 
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including decreased FOXP3 expression (by either hyper-
methylation of the FOXP3 promoter or skewed X chro-
mosome inactivation (the site of the FOXP3 locus)), 
decreased expression of RUNX1 (which controls FOXP3 
expression), low serum levels of semaphorin 3A (which 
is important for Treg cell maintenance) and increased 
plasticity of Treg cells towards a TH17 cell phenotype27,28. 
Daily low- dose IL-2 administration in patients with 
chronic graft-versus-host disease (GVHD) improved 
fibrotic and sclerotic skin manifestations, attesting to the 
ability of Treg cells to repair tissues144,145. The importance 
of Treg cell impairment in sclerosing diseases is supported 
by a report of improved fibrotic and sclerotic skin mani-
festations following daily low- dose IL-2 administration 
in patients with chronic GVHD.

Impaired Treg cell function has been reported in 
patients with different forms of small- vessel and 
large- vessel vasculitides including granulomatosis 
with polyangiitis146, eosinophilic granulomatosis with 
polyangiitis147,148, hepatitis C virus (HCV)- induced 
vasculitis149,150, polyarteritis nodosa151, Behçet disease152, 
Kawasaki syndrome153, Takayasu arteritis154, giant cell 
arteritis and polymyalgia rheumatica155.

Sarcoidosis is a systemic granulomatous disease 
characterized by granuloma formation in response to 
an unknown trigger, which induces an innate immune 
response (activation of dendritic cells, macrophages 
or epithelioid cells) and an adaptive immune response 

mediated by TH1 cells and TH17 cells. Although the num-
ber of Treg cells in the circulation is elevated in individ-
uals with sarcoidosis156, the function29 and survival157 of 
these cells are impaired. Elevated TNFR2+ Treg cell num-
bers and soluble TNFR2 levels correlate with response 
to infliximab treatment in patients with sarcoidosis156,158.

Gout is an innate immunity- driven, NLRP3 
inflammasome- mediated intermittent inflammatory 
arthritis that develops in response to the formation of 
monosodium urate crystals159. Decreased Treg cell to TH17 
cell ratios have been observed in rats induced to develop 
gout arthritis160. The current evidence of Treg cell impair-
ment in rheumatological autoimmune diseases sum-
marized here provides a rationale for Treg cell- inducing 
treatments.

IL-2 therapy in mouse disease models
Low- dose IL-2 treatment of mice corresponds to admin-
istration of ≤50,000 international units (IU) daily39,161. 
At these doses, treatment of C57BL/6 mice leads to a 
dose- dependent increase in Treg cell number and an 
improvement in the conventional T cell–Treg cell bal-
ance with an early recirculation of blood Treg cells in 
secondary lymphoid organs162. Of note, long- term (up 
to 1 year) IL-2 treatment, accomplished by infection of 
mice with a recombinant adeno- associated viral vec-
tor (rAAV), increased and activated Treg cells without 
impairing immune responses to infections, vaccination 
or cancer163. These data suggest that long- term adminis-
tration of IL-2 is not associated with impaired immune 
responses, at least in mice.

IL-2 and Treg cell- directed IL-2–anti- IL-2 antibody 
complexes have been extensively studied in various ani-
mal models, including autoimmunity, allergy, infection, 
transplantation and cancer5,164, as well as rheumatic dis-
eases. In lupus- prone NZB/NZW F1 mice, an acquired 
deficiency of IL-2 and IL-2- producing CD4+ T cells 
leads to hyperactivity of conventional T cells as well as 
an imbalance of Treg cells and conventional T cells (that 
is, a low Treg cell to conventional T cell ratio), which is 
associated with disease progression. Treg cells in this 
model are functionally intact; treatment with low- dose 
IL-2 reverses this homeostatic Treg cell dysregulation 
by increasing Treg cell numbers in the blood, lymphoid 
organs and kidneys, leading to prolonged survival and 
reduced kidney injury126,165. Incidentally, this obser-
vation highlights that IL-2 treatment is not reserved 
solely for settings in which there is a Treg cell deficiency. 
Improvement of lupus symptoms has been shown in two 
additional mouse models, NZB/W F1 mice and MRL/lpr 
mice117,118,166–168.

Administration of IL-2–anti- IL-2 antibody complex 
suppressed collagen- induced arthritis, increased periph-
eral and synovial Treg cell abundance and reduced the 
production of pro- inflammatory cytokines169. Infectious 
arthritis, which leads to rapid and severe destruction of 
the joint, is exacerbated by pathogenic CD4+ T cells and 
TH17 cells. In mice, IL-2- induced Treg cells reduces sep-
tic arthritis severity and systemic inflammation, while 
preserving host immune defence170,171. In other mouse 
models of autoimmunity, including EAE172, T1DM173, 
sclerosing cholangitis174, IL-2 or IL-2–anti- IL-2 antibody 

Fig. 2 | Pathogenesis of seropositive RA and implications for IL-2 therapy. In a healthy 
joint, fibroblast- like synoviocytes (FLSs) and macrophage- like synoviocytes build the 
synovial intimal lining and control the composition of the synovial fluid, which lubricates 
and nourishes the cartilage. In rheumatoid arthritis (RA), epigenetic modifications 
transform the intimal lining to an aggressive, hyperplastic, invasive tissue mass, a  
so- called pannus, which produces pathogenic mediators such as cytokines and proteases 
(including matrix metalloproteinases (MMPs)), activates the innate and adaptive immune 
system, induces angiogenesis and activates endothelial cells (facilitating immune cell 
invasion), ultimately causing cartilage damage and joint destruction. Macrophages, 
dendritic cells (DCs), T cells, B cells and mast cells recruited to the synovial sublining layer 
promote and maintain inflammation, whereas neutrophils are mainly located in the 
synovial fluid. IFN- producing or granulocyte–macrophage colony-stimulating factor 
(GM-CSF)- producing FLSs drive pathogenic T cells and neutrophils, respectively, and 
promote B cell differentiation by production of IL-6, BAFF, APRIL, CXCL12 and VCAM1. 
Antigen presentation to T cells occurs via DCs and FLSs, which also internalize neutrophil 
extracellular traps containing citrullinated peptides. Macrophages are central effector 
cells of synovitis and the most prominent source of the pro- inflammatory cytokines TNF 
and IL-1β, which reciprocally stimulate T cells, B cells, macrophages and FLSs. In addition, 
pro- inflammatory macrophages present autoantigens to T cells and produce, together 
with neutrophils, reactive oxygen species (ROS), matrix- degrading enzymes and 
prostaglandins (not shown). FLSs and macrophages induce osteoclastogenesis by RANKL 
expression and pro- inflammatory cytokine production and suppress the repair of bone 
erosions by inhibition of osteoblasts. IL-17 , IL-1 and ROS from macrophages induce 
apoptosis of chondrocytes, which regulate matrix formation and cartilage protection.  
In lymph nodes, B cells are co- stimulated by T cells and DCs, and in ectopic germinal 
centres (GCs) by T follicular helper (TFH) cells and follicular DCs. T follicular regulatory (TFR) 
cells suppress TFH cells. Autoantibody- producing B cells can further develop into memory 
B cells, plasmablasts and plasma cells. Autoantibodies to citrullinated protein antigens 
(ACPAs) or autoantibodies specific for self IgG-Fc (rheumatoid factor (RF)) are present in 
about two- thirds of patients and define seropositive RA. ACPAs and immune complexes 
can activate macrophages, neutrophils and osteoclasts (not shown). Reduced IL-2 
availability in RA impairs regulatory T (Treg) cell function and numbers, and treatment with 
low- dose IL-2 enhances Treg cell suppressive function and abundance as well as inhibits  
T helper 17 (TH17) cells, TFH cells and B cells. M- CSF, macrophage colony- stimulating 
factor; mDC, myeloid dendritic cell.
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complex, administration leads to increased Treg cell 
abundance, resulting in partial or complete responses.

IL-2 therapy in rheumatic diseases
The clinical use of IL-2 was first reported in 1984 as 
high- dose treatment with the aim of stimulating conven-
tional T cell activity against tumour cells175,176, which was 
followed by studies that led to FDA approval of high- dose 
IL-2 for treatment of metastatic renal cell cancer and 
later for metastatic melanoma. At high doses, IL-2 led to 
a durable complete response in 5–7% of patients, but also 
caused severe toxic adverse effects and a major increase 
in Treg cell number, which most likely limited its thera-
peutic efficacy by a contra- productive regulatory activity 
of Treg cells against the previously activated conventional 
T cells5,176. In the early 1990s, different Il2 or Il2R knock-
out mice revealed severe autoimmunity rather than the 
expected immunodeficiency177. This ‘IL-2 paradox’ was 
explained by a Treg cell deficiency178. The relevance of 
IL-2 in autoimmunity became clear but the therapeutic 
potential of this cytokine in autoimmunity was blunted 
by its pleiotropic effects and the risk of stimulating dan-
gerous (tissue- damaging) effector T cells. More than  
10 years later, in 2006, researchers reasoned that because 
Treg cells constitutively express the high- affinity IL-2 
receptor, using low- dose IL-2 in human autoimmune 
diseases might serve as means to stimulate Treg cell activ-
ity preferentially without activating effector T cells5,150. 
This proved to be the case and it is now established that 
at doses of 300,000–3,000,000 IU daily in humans, IL-2 
stimulates mainly Treg cells and is well tolerated5,179,180. 
As Treg cell insufficiency is central to the pathogenesis 
of most autoimmune diseases, low- dose IL-2 may have 
great therapeutic potential and broad clinical applicabil-
ity. However, several factors can influence the efficacy 
of low- dose IL-2 in different autoimmune diseases, 

including defects in IL-2 signalling, inflammation and 
bystander activation of conventional T cells, NK cells, 
ILC2s and eosinophils, and inappropriate resistance of 
these immune cells to the suppressive effect of Treg cells 
in the inflammatory context179.

Safety. Low- dose IL-2 is well tolerated and adverse 
events are mostly dose- dependent, mild- to- moderate 
and transient. In several studies, the most frequently 
reported adverse events were injection site reactions 
(which are common to many injectable biotherapies), 
transient fever, influenza- like symptoms, myalgia and 
nausea150,179,181,182. At the highest end of the low- dose 
range (3 MIU daily), adverse events such as chills, 
influenza- like symptoms, headaches, dizziness, arthral-
gia and myalgia occur with increased frequency and 
severity145,181. A recent meta- analysis of low- dose IL-2 
safety confirmed these results180. Of note, 1- year treat-
ment with low- dose IL-2 was well tolerated in children 
(6–12 years of age) with recent- onset T1DM183. To date, 
no induction of new or aggravation of pre- existing 
autoimmune syndromes has been observed in people 
treated with low- dose IL-2. Thyroiditis, which has been 
reported in people treated with high- dose IL-2, is rarely 
observed with low- dose IL-2 and is reversible after treat-
ment cessation184. A transient increase in eosinophils, 
fibrinogen and D- dimer has been reported with low- 
dose IL-2, without relevant alterations in blood counts, 
liver enzymes, renal parameters, coagulation, plasma 
proteins and immunoglobulins179,181. While anti- IL-2 
antibodies have been described in patients with cancer 
who receive high- dose IL-2, bona fide anti- IL-2 anti-
bodies have not been described after low- dose IL-2 
treatment112,179,185.

In contrast to current immunosuppressive treatments 
for autoimmune diseases, low- dose IL-2 treatment is not 
associated with serious infections. In fact, in SLE, lower 
infection rates were recorded in the IL-2- treated group 
compared with the placebo group (6.9% versus 20%)182. 
Moreover, there was no increase in HCV viral loads in 
HCV- induced vasculitis150,182. These lower infection rates 
might be explained by improved virus- specific CD8+ 
T cell responses186 and/or enhanced NK cell activity with 
increased expression of IFNγ, NKp46 and NKG2D182. 
Of note, long- term administration of low- dose IL-2 in 
mice does not inhibit immune responses to vaccina-
tion and subsequent infection, nor does it affect cancer  
occurrence and growth163,187.

Clinical efficacy. The first trial of low- dose IL-2 in 
people with an autoimmune disease showed clinical 
improvement in eight of ten patients with HCV- induced 
vasculitis150, whereas in three of three patients arthral-
gia disappeared. In the TRANSREG study in 46 patients 
with any of 11 different autoimmune diseases, low- dose 
IL-2 triggered a remarkably similar and specific increase 
in Treg cell number179. The clinical outcome was evalu-
ated using a Clinical Global Impression tool188, which 
recorded a significant improvement (P < 0.001) during 
the 6 months of treatment and at 2 months of follow- up.  
Disease- specific scores, such as the Bath Ankylosing 
Spondylitis Disease Activity Index for ankylosing 

Fig. 3 | Pathogenesis of SLE and implications for IL-2 therapy. Certain triggers in 
genetically predisposed individuals lead to keratinocyte cell death, which results in the 
release of autoantigens that are recognized by pattern recognition receptors (PRRs) such 
as the membrane- bound Toll- like receptors (TLRs; in particular, intracellular TLR3, TLR7 
and TLR9) or TLR- independent cytoplasmic nucleic- acid- detecting PRRs (such as NOD 
receptors, RIG1, MDA5 or cGAS–STING) in plasmacytoid dendritic cells (pDCs) or 
macrophages. In addition, immune complexes, formed by FcγRIIa- mediated endocytosis, 
and self- antigens and cytokines released during increased NETosis (a form of neutrophil 
cell death involving release of neutrophil extracellular traps (NETs)), can activate PRRs  
in pDCs, which are the main producers of interferon- α (IFNα). Macrophages and IFNα- 
activated monocytes are pivotal in organ damage. Activated autoantigen- presenting 
dendritic cells (DCs) induce T cell differentiation and autoantibody production, drive  
T follicular helper (TFH) cell differentiation, promote B cell help and impair regulatory T 
(Treg) cell function. Furthermore, direct IFNα or TLR stimulation, cytokines such as BAFF 
from DCs or IL-21 from TFH cells or T cell costimulation, induce B cell maturation and 
expansion, plasma cell generation and production of high- affinity autoantibodies 
against IgG, IgA and IgE. Immune complex generation, consisting of self- antigens and 
the corresponding autoantibodies, as well as activation of basophils and pDCs by 
autoantibodies against IgE, B cells and neutrophils by nucleic acids and self- antigens, 
and keratinocytes by autocrine type I and type III interferons (especially IFNκ and IFNλ)  
or CXCL10- induced IL-6 production, act as feedback loops that further drive 
hyperactivation of innate immune pathways. Treg cells are reduced in number or are 
functionally impaired in systemic lupus erythematosus but, in addition, they are affected 
by low IL-2 availability and direct inhibition by IFNα. Low- dose IL-2 treatment leads to 
Treg cell expansion and direct inhibition of B cells, TFH cells and T helper 17 (TH17) cells, 
thereby leading to control of autoimmunity. dsDNA, double- stranded DNA; LN, lymph 
node; mDC, myeloid dendritic cell.
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spondylitis, the SLE Disease Activity Index (SLEDAI) 
for SLE and the Psoriasis Area Severity Index for psoria-
sis, improved, along with patient- reported arthralgia and 
fatigue179. Similar overall results have now been obta-
ined in a further 80 patients in the TRANSREG study  
(D.K., unpublished observations).

Low- dose IL-2 has been extensively investigated 
in patients with SLE and in multiple studies has pro-
duced clinical benefit110,181,182,189. First, low- dose IL-2 
was remarkably efficient in the treatment of a single 
patient with severe refractory SLE190. Subsequently, four 
open label studies110,181,189,191, one single- site randomized 
controlled trial (RCT)182 and a multicentre RCT (D.K., 
unpublished observations) were conducted. Most studies 
(aside from one study110, in which no clinical assessment 
was performed) showed a clinically significant improve-
ment, as shown by SLEDAI181,189, as well as a reduction in 
concomitant prednisone use by ≥50% in 44% of patients 
receiving prednisone alone versus 67% of patients treated 
with low- dose IL-2 (refs182,189). In the single- site RCT, 
SLE Responder Index 4 (SRI-4) at 12 weeks was not 
significantly different between treatment and placebo 
groups (P = 0.052), which means that the primary end 
point was not met, but showed significance (P < 0.05) 
at 6, 8, 10, 16 and 24 weeks182. In this trial, in patients 
with lupus nephritis (13/30 in the low- dose IL-2 group 
and 12/30 in the placebo group), complete remission 
was achieved in 53.85% of patients (7/13) versus 16.67% 
of patients (2/12), respectively (P = 0.036). In addition,  
in patients with lupus nephritis, increased serum IL-2 
levels at week 10 correlated with significantly higher 
remission rates (61% versus 9%, P = 0.041) and a signifi-
cant reduction in 24- h urine protein (P = 0.002)192. In this 
study, the decrease in renal involvement in the low- dose 
IL-2 and conventional treatment groups was significant 
(52% and 23%, respectively, P = 0.025)192. Rash, alope-
cia and arthralgia responded well to IL-2, decreasing 
significantly182,189 (Table 1; an expanded version of this 
table is available in Supplementary Table 1).

Biological efficacy. In the TRANSREG study, an increase 
in Treg cell abundance was observed in all patients and 
did not differ according to disease; after daily injec-
tions of 1 MIU IL-2 for 5 days, the mean increase was 
about twofold on day 8 and conventional T cells were 
not activated179. Treg cells from patients with SLE, which 
showed reduced or undetectable IL-2Rα expression 
before IL-2 treatment, showed a marked upregulation 
of IL-2Rα Treg

181.
Aside from Treg cells, in all studies, NK cells and eosin-

ophils were the main cell populations that responded to 
low- dose IL-2 (that is, increased). The subpopulation 
of NK cells that responded was CD56hi regulatory NK 
cells (that is, NK cells that produce cytokines but are not 
cytotoxic).

Interestingly, B cells also respond to IL-2. In the first 
study of low- dose IL-2 treatment of patients with HCV 
vasculitis, decreased numbers of B cells were found150. 
The IgD+CD27+ marginal- zone B cell subset was par-
ticularly affected, as has also been found in patients 
with SLE181. Similarly, in patients with T1DM trea-
ted with low- dose IL-2, the increase in Treg cell number 

correlated with decreased B cell number112. These obser-
vations remain unexplained but are possibly favour-
able towards the achievement of clinical response in  
autoimmune diseases.

IL-2 therapy in other autoimmune diseases. In HCV- 
induced cryoglobulinaemic vasculitis, a 5- day course  
of 1.5 MIU IL-2 daily was followed by a 5- day course of 
3 MIU daily at weeks 3, 6 and 9. Improvement in vascu-
litis occurred in eight of ten patients and disappearance 
of purpura in seven of seven patients and arthralgia in 
three of three patients. Vasculitis flares or increased 
HCV viraemia were not noted150.

In other diseases (Table 1; Supplementary Table 1), 
such as pSS193, ankylosing spondylitis194, psoriatic 
arthritis25 and polymyositis or dermatomyositis195,196, 
single- course low- dose IL-2 regimens resulted in an 
increase in Treg cell number. A single 5- day course of 
low- dose IL-2 daily in patients with pSS transiently 
restored the TH17 cell–Treg cell balance but did not result 
in clinical improvement193. By contrast, in psoriatic 
arthritis, a similar treatment led to clinical improvement 
in most activity measures, including tender or swollen 
joint counts and pain visual analogue scale scores25. 
Despite promising clinical results in a pilot study in 
alopecia areata197, low- dose IL-2- dependent increases 
in Treg cell abundance did not correlate with clinical effi-
cacy in a larger randomized, placebo- controlled trial198. 
Two case reports showed efficacy of low- dose IL-2 in 
two of three patients with immune thrombocytopenia199 
and autoimmune hepatitis200. In two studies in patients 
with polymyositis or dermatomyositis, a single course 
of low- dose IL-2 in addition to conventional treatment 
induced reduction of muscle enzymes195,196.

IL-2 in combination therapies
Treg cell activation now seems to be a promising novel 
target for the treatment of autoimmune diseases. The 
first demonstration that low- dose IL-2 specifically 
activates Treg cells kindled interest in the use of IL-2 in 
combination with drugs that target inflammatory path-
ways implicated in autoimmune disease pathogenesis. 
For example, biologics that block pro- inflammatory 
cytokines such as TNF, IL-1, IL-6, IL-17 and IL-23 can 
have synergistic effects by inhibiting inflammation and 
concomitantly improving Treg cell immunosuppres-
sive activity5. Time- controlled combination therapy of 
low- dose IL-2 with effector T cell- depleting treatments 
or immunosuppressive drugs also has clear potential as 
effector T cells get reduced while Treg cells are boosted.

IL-2 and TNF blockers. Treg cells have a decreased abil-
ity to suppress production of IFNγ and TNF in RA, 
and treatment with anti- TNF biologics increases their 
immunosuppressive function201. By binding to surface 
TNF on monocytes, the anti- TNF biologic adalimumab 
causes an upregulation of monocyte surface TNF, which 
signals through TNFR2 on Treg cells202–205, enhancing 
IL-2 responsiveness and Treg cell stability and resulting 
in increased expression of IL-2Rα and FOXP3 in human 
Treg cells206,207 by FOXP3 promoter hypomethylation208,209. 
Both IL-2 and TNF–TNFR2 signalling are necessary for 
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Table 1 | Trials of low- dose IL-2 treatment in autoimmune diseases

Study Disease (n) Type of study IL-2 regimen Clinical outcome Biological outcome

Saadoun 
et al. (2011)150

HCV- induced 
cryoglobulinaemic 
vasculitis (10)

Prospective 
open- label, 
phase I/IIa

5- day cycle of 1.5 MIU 
daily, followed by 5- day 
cycle of 3 MIU daily at 
weeks 3, 6 and 9

Improvement in vasculitis 
with disappearance of 
purpura and arthralgia; 
partly improved kidney 
dysfunction; two patients 
with neuropathy only did not 
improve; no vasculitis flare or 
increased HCV viraemia

Clinical improvements 
coincided with increased 
Treg cells; about threefold 
increase in Treg cells, with 
potent suppressive activity; 
no activation of CD4+ or CD8+ 
conventional T cells

Rosenzwajg 
et al. (2019) 
(TRANSREG 
study)179

Mild- to- moderate RA (4), 
AS (10), SLE (6), psoriasis 
(5), Behçet disease 
(2), GPA (1), Takayasu 
arteritis (1), Crohn’s 
disease (7), ulcerative 
colitis (4), autoimmune 
hepatitis (2) or sclerosing 
cholangitis (4)

Prospective, 
open- label, 
phase I/IIa

1 MIU daily for 5 days 
followed by two single 
injections weekly for  
6 months

No disease flares; CGI 
improved significantly 
(P < 0.001) at 3 and 6 months

About twofold increase  
in Treg cells (P < 0.0001) on  
day 8 without activation  
of conventional T cells

von Spee-  
Mayer et al. 
(2016)110

SLE (5) Prospective, 
open- label

One 5- day cycle  
of 1.5 MIU IL-2 daily

Not analysed Increased Treg cells; slight 
increase in CD25+ T cells, CD8+ 
T cells, NKT cells and NK cells

He et al. 
(2016)189

SLE (40) Prospective, 
open- label

Three cycles of 1 MIU 
IL-2 every other day  
for 2 weeks followed  
by a 2- week break  
in treatment

38 patients completed 
the study; SRI-4 increased 
2.8- fold from week 2 to week 
12; SLEDAI significantly 
reduced (P < 0.001); 25 
patients (67.6%) reduced 
prednisone use by ≥50%  
at week 12

Significant increase in Treg cell 
number and suppressive 
function; significant decrease 
in TFH cells, TH17 cells, 
CD4−CD8− αβ T cells and, in 
high- responders, TFH cell to 
Treg cell and TH17 cell to Treg cell 
ratios

Humrich 
et al. (2019) 
(PRO- IMMUN 
study)181

SLE (12) Phase I/IIa 5- day cycles of 1.5 
MIU daily followed 
by 3 or 4.5 MIU daily 
according to Treg cell 
increase at weeks 2, 5 
and 8

Significant decrease in 
SELENA- SLEDAI before 
second treatment cycle 
in responders (P = 0.03); 
SELENA- SLEDAI changes 
significantly correlated with 
CD25hi Treg cell increase

Primary end pointa met  
in 92% of patients (11/12), 
which correlated with the 
cumulative IL-2 dose

Zhao et al. 
(2019)191

SLE (120) Prospective, 
multicourse, 
open- label

100 ‘WIU’ IL-2 s.c.  
for 3–5 days each  
month and 0.5 mg  
oral rapamycin every 
other day

Significant improvement in 
SLEDAI from 6 to 24 weeks 
(P < 0.001)

Treg cells significantly increased 
(P < 0.001)

Shao et al. 
(2019)192

SLE (80) Open label Three cycles of a 
2- week course with  
1 MIU IL-2 every other 
day, followed by a 
2- week treatment 
break (50/80 patients 
received IL-2)

In patients with IL-2 
treatment, reduced 
serum IL-2 concentrations 
correlated with LN less 
remission and higher 
severity measured by 24- h 
urine protein

Treg cells increased (only 
statistically significant  
in patients with LN)

He et al. 
(2020)182

SLE (60) Randomized, 
single- centre, 
double- blind, 
placebo-  
controlled

Three cycles of 1 MIU 
IL-2 every other day 
for 2 weeks followed 
by a 2- week treatment 
break

Primary end point 
(significant increase in SRI-4) 
met at weeks 6, 8, 10, 16 and 
24 (P < 0.05) but not at week 
12 (P = 0.052); complete 
remission of LN in 54% (7/13) 
receiving IL-2 and 17% (2/12) 
receiving placebo (P = 0.036)

Significant increase in 
Treg cells (P < 0.05); anti- dsDNA 
antibody titres decreased 
significantly; 24- h proteinuria 
decreased about threefold in 
the IL-2 group (baseline versus 
week 24)

Miao et al. 
(2018)193

Primary Sjögren 
syndrome (190)

Single- course, 
open- label

0.5 MIU IL-2 daily  
for 5 days versus 
continuing 
immunosuppression

No clinical improvement in 
the short term

Treg cells and conventional 
CD4+ T cells (including TH17 
cells) increased; TH17 cell to 
Treg cell ratio normalized after 
IL-2 treatment

Wang et al. 
(2020)25

PsA (117) Single- course, 
randomized, 
open- label

0.5 MIU IL-2 (s.c.) 
daily for 5 days 
and conventional 
treatment (22/117) 
or conventional 
treatment only (95/117)

Significant improvements 
(P < 0.05) in most disease 
activity measures (e.g. 
tender or swollen joint 
count)

Significant increase in 
absolute number of Treg cells 
and TH17 cell counts (P < 0.001)
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enhanced Treg cell function64 but combination therapy 
with TNF blockers and IL-2 has not yet been assessed 
in clinical trials.

IL-2 and tocilizumab. IL-6, together with TGFβ, shifts 
the balance between TH17 cells and Treg cells towards 
TH17 cell differentiation by abrogating the FOXP3- 
associated inhibition of RORA and RORC expression210,211 
and through STAT3- mediated downregulation of 
FOXP3 expression100. Treatment of patients with RA 
with tocilizumab, an anti- IL-6 receptor antibody, leads 
to an expansion of the Treg cell population62,212–214 that is 
associated with increased Helios expression215. In a study 
in 50 patients with RA who were randomly assigned to 
a combination of IL-2 (at a dosage referred to as ‘50 
WIU’ for 5 days), tocilizumab (160 mg at day 1 and 3) 
and standard of care (glucocorticoids and DMARDs), or 
of IL-2 and standard of care, or standard of care alone, 
the triple combination of IL-2 and tocilizumab resulted 
in expansion of Treg cells without affecting TH17 cells, 
whereas IL-2 plus standard of care led to expansion of 
both cell populations. Compared with standard of care, 

the triple combination therapy significantly reduced the  
numbers of tender joints (P < 0.01) and swollen joints 
(P < 0.05)216. Of note, IL-6 promotes resistance of con-
ventional T cells to Treg cell- mediated suppression, 
providing an additional rationale for combining IL-6R 
blockade and low- dose IL-2 therapy217,218.

Treg cells and ustekinumab. Aside from its importance 
for TH17 cell maintenance and IL-17 production, IL-23 
decreases IL-2 production by impairing NF- κBp65 in 
mice219 and induces differentiation of Treg cells into 
pro- inflammatory RoRγt+IL-17A+ Treg cells in mice220. 
Furthermore, IL-23 inhibits Treg cell induction221 and 
differentiation of induced Treg cells by regulating their 
responsiveness to IL-33 and, in thymic Treg cells, ST2 
signal transduction and expression of GATA3- regulated 
genes222. In psoriasis, treatment with the anti- IL-12–IL-23 
monoclonal antibody ustekinumab leads to a Treg cell 
increase in humans and mice223. In a recent double- blind, 
randomized, controlled phase II trial in SLE, usteki-
numab showed superior efficacy compared with placebo 
and improved serum levels of anti- dsDNA antibodies 

Study Disease (n) Type of study IL-2 regimen Clinical outcome Biological outcome

An et al. 
(2019)194

AS (48) Single- course, 
open- label

50 ‘WIU’ IL-2 (s.c.) daily 
for 5 days

Not assessed Increase in CD4+ Treg cells, 
CD8+ Treg cells and TH17 cells

Castela et al. 
(2014)197

Alopecia areata (5) Single- course 
single- centre, 
prospective 
open- label

5- day course of 1.5 
MIU IL-2 daily followed 
by 3 MIU IL-2 daily at 
weeks 3, 6 and 9

Partial hair regrowth (4/5), 
maintained and even 
improved after 6 months

Treg cell recruitment into 
lesional skin and slight 
increase in peripheral blood

Le Duff et al. 
(2021)198

Alopecia areata (43) Prospective, 
multicentre, 
randomized, 
placebo-  
controlled

5- day course of 1.5 
MIU IL-2 daily followed 
by 5- day course of 3 
MIU IL-2 daily at weeks 
3, 6 and 9

No significant improvement 
in body hair or nails

Increase in total, especially 
naive, Treg cells and NK cells

Zhang et al. 
(2018)199

Immune 
thrombocytopenia (3)

Case report 5- day cycle of 1.0 MIU 
IL-2 daily per week or  
2 or 4 weeks

Thrombocyte increase in 
patients 1 and 2 but not  
in patient 3 (although 
Treg cells increased)

Treg cells increased twofold to 
threefold in patients 2 and 3; 
clinical response in patient 1,  
although Treg numbers 
unchanged

Lim et al. 
(2018)200

Autoimmune hepatitis (2) Case report Monthly cycles of 5 
days of 1 MIU IL-2 daily 
for 6 months

AST and IgG levels 
normalized in patient 2  
and remained elevated  
in patient 1

Significant increase in 
Treg cells at day 9 of each cycle 
(P < 0.005)

Feng et al. 
(2019)195

PM (10) or DM (61) Open label Conventional 
treatment and 0.5 MIU 
IL-2 daily for 5 days 
(7/10 PM; 35/61 DM) 
versus conventional 
treatment alone (3/10 
PM; 26/61 DM)

CK, LDH and HBDH 
decreased significantly with 
both treatment regimens

Conventional T cells and 
Treg cells significantly reduced 
with conventional treatment 
versus significantly increased 
with IL-2 combination therapy

Zhang et al. 
(2019)196

PM (39) or DM (108) Open label Conventional 
treatment and 0.5 
MIU IL-2 daily for 5 
days (31/147) versus 
conventional treatment 
alone (116/147)

Greater decrease in VAS, 
ESR, CK, CK- MB, LDH and 
HBDH with IL-2 than with 
conventional treatment 
alone

Fourfold increase in Treg cells 
and modest increase in total 
T cells and subsets, and B cells

AS, ankylosing spondylitis; AST, aspartate aminotransferase; CGI, clinical global impression; CK, creatine kinase; CK- MB, CK myocardial band; DM, dermatomyositis; 
ESR, erythrocyte sedimentation rate; dsDNA, double- stranded DNA; GPA, granulomatosis with polyangiitis; HBDH, hydroxybutyrate dehydrogenase; HCV, 
hepatitis C virus; LDH, lactate dehydrogenase; LN, lupus nephritis; MIU, million international units; NK cell, natural killer cell; NKT cell, natural killer T cell; PM, 
polymyositis; PsA, psoriatic arthritis; RA, rheumatoid arthritis; s.c., subcutaneously; SELENA, Safety of Estrogens in Lupus Erythematosus National Assessment; SLE, 
systemic lupus erythematosus; SLEDAI, Systemic Lupus Erythematosus Disease Activity Index; SRI-4, SLE Responder Index 4; TFH cell, T follicular helper cell; TH17 
cell, T helper 17 cell; Treg cell, regulatory T cell; VAS, visual analogue scale. aDefined as a 100% increase in Treg cell levels from baseline to the treatment end point at 
day 62.

Table 1 (cont.) | Trials of low- dose IL-2 treatment in autoimmune diseases
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and C3 (ref.224), although the follow- up phase III trial 
was interrupted following futility analysis. Combination 
of IL-2 and ustekinumab therapy have not yet been tested 
but not only would inhibition of the IL-23 pathway 
restore Treg cells but also might positively support Treg cell 
activation with the addition of low- dose IL-2.

IL-2 and rapamycin. Combination therapy with low- dose 
IL-2 and rapamycin, a mTOR inhibitor that inhibits TH17 
cell differentiation while not affecting Treg cell prolifer-
ation and differentiation, resulted in significant clinical 
responses in patients with therapy- refractory SLE191 
(Table 1; Supplementary Table 1). In autoimmune dis-
eases, overactivation of conventional T cells and dimin-
ished Treg cell functions both foster a pro- inflammatory 
environment for disease pathogenesis; even with normal 
activity, Treg cells would have difficulty in controlling an 
overactivated immune system. The combination of spe-
cific inhibition of effector T cells and specific induction of 
Treg cells has great potential for controlling autoimmunity 
and restoring immune tolerance.

Novel IL-2 therapies
Low- dose IL-2 has a half- life of ~10 min after intrave-
nous injection and 4–6 h after subcutaneous injection 
in humans but its biological effect on Treg cells lasts for 
days or weeks (depending on the dose)112. Improvement 
of the IL-2 half- life should increase the interval between 
injections225, although limiting the ease of treatment 
interruption in the event of adverse effects. Dose opti-
mization trials have shown a dose- dependent activa-
tion of conventional T cells at doses of IL-2 >3 MIU 
daily5. Although no study so far has found low- dose 
IL-2- dependent serious adverse events that could be 
related to stimulation of conventional T cells, improving 
the selectivity of IL-2 could allow the use of higher doses 
to trigger a greater effect on Treg cells. Similarly, many 
academic and pharmaceutical industry researchers have 
expressed interest in generating novel IL-2 formulations 
with improved half- life and selectivity. For the treatment 
of cancer, the goal is to stimulate conventional T cells 
without stimulating Treg cells, mostly by reducing the 
affinity of IL-2Rα for IL-2. Conversely, for the treatment 
of autoimmunity and inflammation, improving selectiv-
ity for Treg cells is mostly based on reducing the affinity 
of IL-2Rβ for IL-2 (Table 2).

To improve selectivity and reduce toxic adverse 
effects — especially of high- dose IL-2 for treatment of 
tumours — so- called IL-2 muteins (IL-2 proteins with 
an altered amino acid sequence) were created, by, for 
example, alterations that increase IL-2 affinity for IL-2Rβ 
(as in IL-2 superkines, thereby forgoing the requirement 
for binding to IL-1Rα first) or PEGylation (as in NKTR-
214, in which IL-2 PEGylation blocks its interaction with 
IL-2Rα)39,226.

The characteristics of IL-2–IL-2 antibody complexes 
have also been modulated by using IL-2 monoclonal 
antibodies that bind to different sites in IL-2, and this 
has identified complexes that show improved half- life 
and selectivity and can be directed to either memory 
CD8+ T cells and NK cells (using mouse S4B6 or the 
human MAB602 monoclonal antibodies) or Treg cells 

(using mouse JES6-1 or human 5344 monoclonal anti-
bodies)39. Mouse Treg cell- directed complexes have been 
used in several models of autoimmune, inflammatory 
and metabolic diseases and transplantation. In addition, 
humanized complexes such as IL-2–F5111.2 are effective 
in mouse models of T1DM, EAE and GVHD227.

Fusion proteins containing IL-2 (or muteins)228,229 
bound to an antibody against a cytokine or antigen230, 
so- called immunocytokines, can direct IL-2 to a spe-
cific cell type or locally to a tissue site, thereby enhanc-
ing local immunity231. Treg cell- directed approaches have 
so far targeted TNFR2 (ref.232) or have involved a fusion 
of an IgG1 molecule to two IL-2 N88D muteins233. In 
addition, SLAMF3 on Treg cells would be a promising 
candidate in SLE234. SLAMF3 is a co- regulatory molecule 
in T cell activation and differentiation that enhances IL-2 
sensitivity in T cells by IL-2Rα upregulation, especially 
promoting Treg cell differentiation. Therefore, SLAMF3 
co- stimulation in addition to low- dose IL-2 treatment 
could reverse the Treg cell deficiency in SLE, and thus 
SLAMF3 represents a promising therapeutic target. 
IL-2 targeting to tissues seems to be the next promising 
approach for the treatment of autoimmune diseases.

Alternatively, viral vector- mediated gene transfer can 
be used to ensure continuous IL-2 production, either sys-
temically (preventing T1DM in NOD mice)163. However, 
this approach does not permit treatment interruption 
or cessation in the event of unwanted adverse effects. 
Aerosolized IL-2 seems a feasible delivery mechanism235 
and nanoparticles coated with anti- CD2 or anti- CD4 anti-
bodies have been used to deliver encapsulated IL-2 and 
TGFβ to T cells in mice with lupus236.

Conclusions
Expanding and activating Treg cells is now unanimously 
viewed as an important novel approach to develop-
ing treatments for autoimmune diseases. IL-2 is the 
first- in- class molecule for this approach. IL-2 in its natu-
ral form and used at low doses has already achieved some 
important development milestones. Numerous studies 
have shown that it is possible to efficiently expand and 
activate Treg cells using low- dose IL-2 without activation 
of conventional T cells, and this treatment has a good 
safety profile, and clinical efficacy results are encourag-
ing. However, these results now need to be confirmed 
in phase III trials, which, if successful, could introduce 
IL-2 as a first- line, second- line or add- on biologic in the 
treatment of many autoimmune diseases.

The use of IL-2 should be welcome given that the 
adverse effects are limited and mild and the expected 
clinical benefit appears soon after commencing treat-
ment. Furthermore, IL-2 might perform well in com-
bination with established anti- inflammatory drugs and 
biologics to enhance the established therapeutic benefit. 
It is quite possible that IL-2 might serve as the first- line 
biologic of choice for use in people with mild or moderate 
autoimmune disease and may obviate the use of steroids 
or cytotoxic drugs.

In people with severe autoimmune disease, the use of 
IL-2 in conjunction with other anti- inflammatory ther-
apeutics may be required because, as discussed exten-
sively, Treg cells do not fare well in severe inflammation 
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and IL-2 may be of limited or even no benefit in these 
conditions. It is possible that therapeutic schemes will 
involve first the use of an established anti- inflammatory 

drug followed by IL-2 administration. In addition, 
some drugs, such as methotrexate or TNF inhibitors, 
even induce Treg cells. The use of IL-2 should result in 

Table 2 | IL-2 formulations for the treatment of rheumatic diseases

Formulation Description Effect on 
Treg cells

Effect on effector 
immune cells

Adverse effects Disease or mouse model

Low- dose IL-2  
(refs25,110,150,179, 

181,182,189,194)

Trimeric IL-2R with 
high affinity for IL-2

Strong activation 
and expansion

Marked increase in CD56hi 
NK cells

Dose- dependent, 
mild- to- moderate and 
transient: injection 
site reactions (≤31%), 
influenza- like symptoms 
(≤10%), fever (≤14%), 
infections (≤12%), 
myalgia (≤9%) and 
nausea (≤4%)

Human autoimmune 
diseases, including 
SLE, RA, AS, psoriasis, 
Behçet disease, GPA, 
Takayasu arteritis, Crohn’s 
disease, ulcerative colitis, 
autoimmune hepatitis, 
sclerosing cholangitis, 
vasculitis and ITP

NKTR-358 
(ref.237)

PEGylated IL-2 
mutein with reduced 
affinity for IL-2Rβ

Strong activation No activation of CD4+ 
T cells or CD8+ T cells; less 
than fourfold activation of 
NK cells

No dose- limiting 
toxicities, mostly mild 
injection site reactions

Human SLE

IL-2Rα- directed IL-2–anti- IL-2 antibody complexes

IL-2–JES6-1 
(ref.238)

Anti- mouse IL-2 
mAb JES6-1 (blocks 
IL-2Rβ/γ binding site 
on IL-2)

Strong activation Efficient inhibition of  
naive and memory CD4+ 
T cells and CD8+ T cells,  
and NK cells

Not reported Mouse models of 
autoimmunity, including 
T1DM in NOD mice, 
collagen- induced arthritis, 
T cell- mediated asthma, 
EAE, experimental 
myasthenia, pancreatic 
islet graft transplantation, 
and mouse skin allograft238

IL-2–F5111.2 
(ref.227)

Anti- human IL-2 
mAb F5111.2 (blocks 
IL-2Rγ binding site 
on IL-2)

Strong activation Efficient inhibition of  
naive and memory CD4+ 
T cells and CD8+ T cells,  
and NK cells

Not reported T1DM in NOD mice, EAE 
and GVHD227

IL-2–UFKA1 
(ref.239)

Anti- human IL-2 mAb 
UFKA1 (blocks IL-2Rγ 
binding site on IL-2)

Strong activation Efficient inhibition of  
naive and memory CD4+ 
T cells and CD8+ T cells,  
and NK cells

Not tested in vivo Not tested in vivo

Fusion proteins

IL-2–EHD2– 
sc- mTNFR2 
(refs232,240)

TNFR2- specific  
TNF–IL-2 fusion

Strong activation 
of CD4+ Treg cells 
and CD8+ 
Treg cells

No activation of CD4+ 
T cells, CD8+ T cells,  
B cells, DCs, monocytes  
or neutrophils; NK cells  
not assessed

Not reported Experimental 
collagen- induced arthritis

IgG1–(IL-2N88D)2 
(ref.233)

Two IL-2 muteins 
fused to IgG1

Strong activation 
of CD4+ Treg cells 
and CD8+ 
Treg cells

No activation of CD4+ 
T cells, CD8+ T cells,  
B cells, DCs, monocytes  
or neutrophils; NK cells  
not assessed

Not reported Experimental 
collagen- induced arthritis

Selectikine241 IL-2 fused to 
anti- DNA mAb 
NHS76

Treg cell expansion 
lower than that 
of CD4+ T cells

Strong activation of CD4+ 
T cells and CD8+ T cells and 
weak activation of NK cells

Minor (rash, lymphopenia 
hypotension); no major 
toxicity (such as VLS)

Human metastatic or 
locally advanced tumours

Alternative mechanisms of IL-2 delivery

Nanoparticles236 Anti- CD2 and anti- CD4 
antibody- coated, 
T cell- targeted 
nanoparticles loaded 
with IL-2 and TGFβ

Expansion of 
CD4+ Treg cells 
(twofold) and 
CD8+ Treg cells 
(fourfold)

No activation of CD4+ 
T cells, CD8+ T cells, 
monocytes, DCs or 
granulocytes; NK cells  
not assessed

Reduction in circulating 
anti- dsDNA antibodies 
and proteinuria

BDF1 mouse lupus model

Viral vector163 Viral vector- mediated 
gene transfer 
for systemic IL-2 
production

Increased Treg cell 
abundance

No increase in CD8+ 
T cells, NK cells or B cells in 
peripheral blood; increase 
in Teff cells in spleen

None T1DM in NOD mice

AS, ankylosing spondylitis; DC, dendritic cell; EAE, experimental autoimmune encephalomyelitis; GPA, granulomatosis with polyangiitis; GVHD, graft-versus-host 
disease; IL-2R, IL-2 receptor; ITP, immune thrombocytopenia; mAb, monoclonal antibody; NK cell, natural killer cell; NOD, non- obese diabetic; PEG, polyethylene 
glycol; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; T1DM, type 1 diabetes mellitus; TGFβ, transforming growth factor- β; Teff cells, effector T cells; 
Treg cell, regulatory T cell; VLS, vascular leak syndrome.
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a decrease in the total usage of steroids and minimize 
their known adverse effects in patients with SLE and the 
total dose of methotrexate in patients with RA. Similar 
assumptions can be made for other autoimmune dis-
eases that require continuous use of steroids or other 
immunosuppressive drugs.

It is hoped that IL-2 muteins or biologics in which 
IL-2 is fused to the Fc portion of IgG or PEGylated will 
be more effective than the natural form of IL-2. IL-2 
muteins that are designed to avoid activating cytotoxic 
T cells and NK cells have reduced affinity for IL-2Rβ. 
However, this alteration results in an intrinsic loss of bio-
activity towards all T cells, which requires using higher 
doses of the modified IL-2 that might favour the devel-
opment of antibodies against this biologic. Also, a mild 
stimulatory effect of cytotoxic cells might even be desir-
able, as the abundance of these cells is decreased in SLE 
and other autoimmune diseases but they are needed to 
fight infection and control autoimmunity128. IL-2–IgG Fc 
fragment fusions could enable week- long or month- long 
intervals between injections.

Another consideration is that Treg cells do not respond 
to IL-2 as expected when they are in the presence of 
pro- inflammatory cytokines or they might not respond 
at all because of an inherent signalling defect116. Drug 
developers might consider fusion of IL-2 with mol-
ecules that, by co- engaging other surface molecules, 
might enhance IL-2’s Treg cell- potentiating effect. For 
example, IL-2 could be fused with antibodies or other 
ligands to direct this cytokine to inflamed tissues, where 
it could suppress inflammation and contribute to the tis-
sue repair process. However, the possible development 
of neutralizing antibodies that are not routinely elicited 
when natural IL-2 is used is a potential drawback.

While there is substantial interest in the develop-
ment of IL-2- based biologics, there are a number of 
important considerations in the planning of clinical 
trials. First, for many of the diseases, it is difficult to 
demonstrate improvement over established, commonly 
used immunosuppressive regimens that have a placebo 
effect. Second, it might be necessary to stratify poten-
tial trial participants according to potential biomarkers 
such as Treg cell number or activation markers. Third, 
the definition of clinical outcome does not always reflect 

biological or disease response. For example, several 
studies used Treg cell expansion as the primary outcome, 
which does not necessarily correspond to immunosup-
pressive capacity or clinical improvement. However, this 
is attributable to the difficulties in comparing fine differ-
ences in inflammation in various organs in autoimmune 
diseases such as SLE, which not strictly overlap in all 
patients. Therefore, it is important that an organ- specific 
manifestation or an autoimmune disease with easily 
defined clinical measures should be chosen to test the 
efficacy of IL-2- based therapies in clinical trials.

We expect that the natural form or engineered 
derivatives of IL-2 will offer a distinct clinical benefit in 
multiple autoimmune diseases and, in view of the lack 
of serious adverse effects, their use in the clinic should 
rapidly gain support.

Dysregulation of Treg cells by reduced abundance or 
functional impairment has been shown to occur in many 
human autoimmune diseases. Treatment with low- dose 
IL-2 has shown good potential to overcome these defi-
ciencies, and promising results, including clinically sig-
nificant improvements, have been obtained with Treg cell 
induction in autoimmune diseases. Further develop-
ment of novel, improved IL-2 formulations, by affinity 
for specific IL-2R subunits, reducing adverse effects or 
targeting IL-2 to the right tissue using many different 
approaches, are now in clinical development.

These Treg cell- directed therapies have the potential 
to regulate and restore immune balance in autoimmune 
diseases. It is important that we discover the setting in 
which curbing a pro- inflammatory milieu by combi-
nation therapy with immunosuppressive drugs is most 
appropriate. Immunosuppressive drugs that promote 
Treg cell differentiation should be used preferentially in 
autoimmune diseases. In the future, efforts to restore 
immune balance will include overcoming the chal-
lenge of inducing antigen- specific Treg cells by specific 
stimulation instead of the current approach of general, 
non- specific Treg cell activation. In the future, the use 
of IL-2 to induce antigen- specific Treg cells could be the 
ultimate approach to reaching long- term remission or 
even cure.
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